296 research outputs found
Inversion of Randomly Corrugated Surfaces Structure from Atom Scattering Data
The Sudden Approximation is applied to invert structural data on randomly
corrugated surfaces from inert atom scattering intensities. Several expressions
relating experimental observables to surface statistical features are derived.
The results suggest that atom (and in particular He) scattering can be used
profitably to study hitherto unexplored forms of complex surface disorder.Comment: 10 pages, no figures. Related papers available at
http://neon.cchem.berkeley.edu/~dan
Improved Multi-Pass Streaming Algorithms for Submodular Maximization with Matroid Constraints
We give improved multi-pass streaming algorithms for the problem of maximizing a monotone or arbitrary non-negative submodular function subject to a general p-matchoid constraint in the model in which elements of the ground set arrive one at a time in a stream. The family of constraints we consider generalizes both the intersection of p arbitrary matroid constraints and p-uniform hypergraph matching. For monotone submodular functions, our algorithm attains a guarantee of p+1+ε using O(p/ε)-passes and requires storing only O(k) elements, where k is the maximum size of feasible solution. This immediately gives an O(1/ε)-pass (2+ε)-approximation for monotone submodular maximization in a matroid and (3+ε)-approximation for monotone submodular matching. Our algorithm is oblivious to the choice ε and can be stopped after any number of passes, delivering the appropriate guarantee. We extend our techniques to obtain the first multi-pass streaming algorithms for general, non-negative submodular functions subject to a p-matchoid constraint. We show that a randomized O(p/ε)-pass algorithm storing O(p³klog(k)/ε³) elements gives a (p+1+γ+O(ε))-approximation, where γ is the guarantee of the best-known offline algorithm for the same problem
A multistage time-stepping scheme for the Navier-Stokes equations
A class of explicit multistage time-stepping schemes is used to construct an algorithm for solving the compressible Navier-Stokes equations. Flexibility in treating arbitrary geometries is obtained with a finite-volume formulation. Numerical efficiency is achieved by employing techniques for accelerating convergence to steady state. Computer processing is enhanced through vectorization of the algorithm. The scheme is evaluated by solving laminar and turbulent flows over a flat plate and an NACA 0012 airfoil. Numerical results are compared with theoretical solutions or other numerical solutions and/or experimental data
An Improved Interpretation of Depletion
The conventional treatment of depletion approximation in p--n-junctions often leaves a student with an erroneous impression that the approximation essentially involves complete neglect of the fraction of the space charge region (SCR) where charge density makes a transition to zero. This paper describes a simple analytical model for clarifying the relationship of depletion approximation to the SCR
- …
