1,230 research outputs found
'Bodily precision': A predictive coding account of individual differences in interoceptive accuracy
Individuals differ in their awareness of afferent information from within their bodies, which is typically assessed by a heartbeat perception measure of ‘interoceptive accuracy’ (IAcc). Neural and behavioural correlates of this trait have been investigated, but a theoretical explanation has yet to be presented. Building on recent models that describe interoception within the free energy/predictive coding framework, this paper applies similar principles to IAcc, proposing that individual differences in IAcc depend on ‘precision’ in interoceptive systems, i.e. the relative weight accorded to ‘prior’ representations and ‘prediction errors’ (that part of incoming interoceptive sensation not accounted for by priors), at various levels within the cortical hierarchy and between modalities. Attention has the effect of optimizing precision both within and between sensory modalities. Our central assumption is that people with high IAcc are able, with attention, to prioritize interoception over other sensory modalities and can thus adjust the relative precision of their interoceptive priors and prediction errors, where appropriate, given their personal history. This characterization explains key findings within the interoception literature; links results previously seen as unrelated or contradictory; and may have important implications for understanding cognitive, behavioural and psychopathological consequences of both high and low interoceptive awareness. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’
Planetary Companions Around Two Solar Type Stars: HD 195019 and HD 217107
We have enlarged the sample of stars in the planet search at Lick
Observatory. Doppler measurements of 82 new stars observed at Lick Observatory,
with additional velocities from Keck Observatory, have revealed two new planet
candidates.
The G3V/IV star, HD 195019, exhibits Keplerian velocity variations with a
period of 18.27 d, an orbital eccentricity of 0.03 +/- 0.03, and M sin i = 3.51
M_Jup. Based on a measurement of Ca II H&K emission, this star is
chromospherically inactive. We estimate the metallicity of HD 195019 to be
approximately solar from ubvy photometry.
The second planet candidate was detected around HD 217107, a G7V star. This
star exhibits a 7.12 d Keplerian period with eccentricity 0.14 +/- 0.05 and M
sin i = 1.27 M_Jup. HD 217107 is also chromospherically inactive. The
photometric metallicity is found to be [Fe/H] = +0.29 +/- 0.1 dex. Given the
relatively short orbital period, the absence of tidal spin-up of HD 217107
provides a theoretical constraint on the upper limit of the companion mass of <
11 M_Jup.Comment: 15 pages, plus 6 figures. To appear in Jan 1999 PAS
Effectiveness of a social support intervention on infant feeding practices : randomised controlled trial
Background: To assess whether monthly home visits from trained volunteers could improve infant feeding practices at age 12 months, a randomised controlled trial was carried out in two disadvantaged inner city London boroughs.
Methods: Women attending baby clinics with their infants (312) were randomised to receive monthly home visits from trained volunteers over a 9-month period (intervention group) or standard professional care only (control group). The primary outcome was vitamin C intakes from fruit. Secondary outcomes included selected macro and micro-nutrients, infant feeding habits, supine length and weight. Data were collected at baseline when infants were aged approximately 10 weeks, and subsequently when the child was 12 and 18 months old.
Results: Two-hundred and twelve women (68%) completed the trial. At both follow-up points no significant differences were found between the groups for vitamin C intakes from fruit or other nutrients. At first follow-up, however, infants in the intervention group were significantly less likely to be given goats’ or soya milks, and were more likely to have three solid meals per day. At the second follow-up, intervention group children were significantly less likely to be still using a bottle. At both follow-up points, intervention group children also consumed significantly more specific fruit and vegetables.
Conclusions: Home visits from trained volunteers had no significant effect on nutrient intakes but did promote some other recommended infant feeding practices
Divergent stereoisomers of molybdenum carbonyl complexes of NHC-based pincer ligands
The first molybdenum complexes of widely used NHC-based CNC and C^N^C pincer ligands are described, viz. [Mo(L)(CO)3] (L = 2,6-bis(mesityl-imidazolylidene)pyridine ≡ CNC-Mes, 1; α,α’-(diimidazolylidene-dodecamethylene)lutidine ≡ C^N^C-12, 2). These complexes have been thoroughly characterised in solution and the solid-state, revealing different stereochemical preferences of the tridentate ligands depending on the nature of the scaffold. In the case of flexible C^N^C-12 an uncommon fac-coordination geometry is observed, whilst the complex of rigid CNC-Mes adopts the expected mer-configuration. For the combination of donors associated with the ligands, DFT calculations establish preferential fac-coordination, however, within the CNC (ΔΔG = +63.1 kJ·mol-1) and C^N^C (ΔΔG = +20.0 kJ·mol-1) scaffolds this conformation is significantly destabilised relative to the mer-alternative
Neural Correlates of Fear in the Periaqueductal Gray
International audienceThe dorsal and ventral periaqueductal gray (dPAG and vPAG, respectively) are embedded in distinct survival networks that coordinate, respectively, innate and conditioned fear-evoked freezing. However, the information encoded by the PAG during these survival behaviors is poorly understood. Recordings in the dPAG and vPAG in rats revealed differences in neuronal activity associated with the two behaviors. During innate fear, neuronal responses were significantly greater in the dPAG compared with the vPAG. After associative fear conditioning and during early extinction (EE), when freezing was maximal, a field potential was evoked in the PAG by the auditory fear conditioned stimulus (CS). With repeated presentations of the unreinforced CS, animals displayed progressively less freezing accompanied by a reduction in event-related field potential amplitude. During EE, the majority of dPAG and vPAG units increased their firing frequency, but spike-triggered averaging showed that only ventral activity during the presentation of the CS was significantly coupled to EMG-related freezing behavior. This PAG–EMG coupling was only present for the onset of freezing activity during the CS in EE. During late extinction, a subpopulation of units in the dPAG and vPAG continued to show CS-evoked responses; that is, they were extinction resistant. Overall, these findings support roles for the dPAG in innate and conditioned fear and for the vPAG in initiating but not maintaining the drive to muscles to generate conditioned freezing. The existence of extinction-susceptible and extinction-resistant cells also suggests that the PAG plays a role in encoding fear memories
Casimir energy in the MIT bag model
The vacuum energies corresponding to massive Dirac fields with the boundary
conditions of the MIT bag model are obtained. The calculations are done with
the fields occupying the regions inside and outside the bag, separately. The
renormalization procedure for each of the situations is studied in detail, in
particular the differences occurring with respect to the case when the field
extends over the whole space. The final result contains several constants
undergoing renormalization, which can be determined only experimentally. The
non-trivial finite parts which appear in the massive case are found exactly,
providing a precise determination of the complete, renormalized zero-point
energy for the first time, in the fermionic case. The vacuum energy behaves
like inverse powers of the mass for large masses.Comment: 19 pages, Latex, 1 Postscript figure, submitted to J. Phys.
Ten Low Mass Companions from the Keck Precision Velocity Survey
Ten new low mass companions have emerged from the Keck precision Doppler
velocity survey, with minimum (msini) masses ranging from 0.8 mjup to 0.34
msun. Five of these are planet candidates with msini < 12 mjup, two are brown
dwarf candidates with msini ~30 mjup, and three are low mass stellar
companions. Hipparcos astrometry reveals the orbital inclinations and masses
for three of the (more massive) companions, and it provides upper limits to the
masses for the rest. A new class of extrasolar planet is emerging,
characterized by nearly circular orbits and orbital radii greater than 1 AU.
The planet HD 4208b appears to be a member of this new class. The mass
distribution of extrasolar planets continues to exhibit a rapid rise from 10
mjup toward the lowest detectable masses near 1 msat.Comment: 26 pages, TeX, plus 13 postscript figure
Characterization the Cool KOIs. II. The M Dwarf KOI-254 and its Hot Jupiter
We report the confirmation and characterization of a transiting gas giant planet orbiting the M dwarf KOI-254 every 2.455239 days, which was originally discovered by the Kepler mission. We use radial velocity measurements, adaptive optics imaging, and near-infrared spectroscopy to confirm the planetary nature of the transit events. KOI-254 b is the first hot Jupiter discovered around an M-type dwarf star. We also present a new model-independent method of using broadband photometry to estimate the mass and metallicity of an M dwarf without relying on a direct distance measurement. Included in this methodology is a new photometric metallicity calibration based on J – K colors. We use this technique to measure the physical properties of KOI-254 and its planet. We measure a planet mass of M_P = 0.505 M_(Jup), radius R_P = 0.96 R_(Jup), and semimajor axis a = 0.030 AU, based on our measured stellar mass M_* = 0.59 M_☉ and radius R_* = 0.55 R_☉. We also find that the host star is metal-rich, which is consistent with the sample of M-type stars known to harbor giant planets
Heat Kernel Expansion for Semitransparent Boundaries
We study the heat kernel for an operator of Laplace type with a
-function potential concentrated on a closed surface. We derive the
general form of the small asymptotics and calculate explicitly several
first heat kernel coefficients.Comment: 16 page
Hyperspherical entanglement entropy
The coefficient of the log term in the entanglement entropy associated with
hyperspherical surfaces in flat space-time is shown to equal the conformal
anomaly by conformally transforming Euclideanised space--time to a sphere and
using already existing formulae for the relevant heat--kernel coefficients
after cyclic factoring. The analytical reason for the result is that the
conformal anomaly on the lune has an extremum at the ordinary sphere limit. A
proof is given. Agreement with a recent evaluation of the coefficient is found.Comment: 7 pages. Final revision. Historical comments amended. Minor remarks
adde
- …
