7,329 research outputs found

    The Role of Commutativity in Constraint Propagation Algorithms

    Full text link
    Constraint propagation algorithms form an important part of most of the constraint programming systems. We provide here a simple, yet very general framework that allows us to explain several constraint propagation algorithms in a systematic way. In this framework we proceed in two steps. First, we introduce a generic iteration algorithm on partial orderings and prove its correctness in an abstract setting. Then we instantiate this algorithm with specific partial orderings and functions to obtain specific constraint propagation algorithms. In particular, using the notions commutativity and semi-commutativity, we show that the {\tt AC-3}, {\tt PC-2}, {\tt DAC} and {\tt DPC} algorithms for achieving (directional) arc consistency and (directional) path consistency are instances of a single generic algorithm. The work reported here extends and simplifies that of Apt \citeyear{Apt99b}.Comment: 35 pages. To appear in ACM TOPLA

    Epistemic Analysis of Strategic Games with Arbitrary Strategy Sets

    Full text link
    We provide here an epistemic analysis of arbitrary strategic games based on the possibility correspondences. Such an analysis calls for the use of transfinite iterations of the corresponding operators. Our approach is based on Tarski's Fixpoint Theorem and applies both to the notions of rationalizability and the iterated elimination of strictly dominated strategies.Comment: 8 pages Proc. of the 11th Conference on Theoretical Aspects of Rationality and Knowledge (TARK XI), 2007. To appea

    Direct Proofs of Order Independence

    Get PDF
    We establish a generic result concerning order independence of a dominance relation on finite games. It allows us to draw conclusions about order independence of various dominance relations in a direct and simple way.Comment: 9 page

    Order Independence and Rationalizability

    Get PDF
    Two natural strategy elimination procedures have been studied for strategic games. The first one involves the notion of (strict, weak, etc) dominance and the second the notion of rationalizability. In the case of dominance the criterion of order independence allowed us to clarify which notions and under what circumstances are robust. In the case of rationalizability this criterion has not been considered. In this paper we investigate the problem of order independence for rationalizability by focusing on three naturally entailed reduction relations on games. These reduction relations are distinguished by the adopted reference point for the notion of a better response. Additionally, they are parametrized by the adopted system of beliefs. We show that for one reduction relation the outcome of its (possibly transfinite) iterations does not depend on the order of elimination of the strategies. This result does not hold for the other two reduction relations. However, under a natural assumption the iterations of all three reduction relations yield the same outcome. The obtained order independence results apply to the frameworks considered in Bernheim 84 and Pearce 84. For finite games the iterations of all three reduction relations coincide and the order independence holds for three natural systems of beliefs considered in the literature.Comment: Appeared in: Proc. of the 10th conference on Theoretical Aspects of Rationality and Knowledge (TARK X), pp. 22-38 (2005

    Relative Strength of Strategy Elimination Procedures

    Get PDF
    We compare here the relative strength of four widely used procedures on finite strategic games: iterated elimination of weakly/strictly dominated strategies by a pure/mixed strategy. A complication is that none of these procedures is based on a monotonic operator. To deal with this problem we use 'global' versions of these operators.Comment: 8 page

    {Relative Strength of Strategy Elimination Procedures

    Get PDF
    We compare here the relative strength of four widely used procedures on finite strategic games: iterated elimination of weakly/strictly dominated strategies by a pure/mixed strategy. A complication is that none of these procedures is based on a monotonic operator. To deal with this problem we use 'global' versions of these operators

    The Role of Monotonicity in the Epistemic Analysis of Strategic Games

    Get PDF
    It is well-known that in finite strategic games true common belief (or common knowledge) of rationality implies that the players will choose only strategies that survive the iterated elimination of strictly dominated strategies. We establish a general theorem that deals with monotonic rationality notions and arbitrary strategic games and allows to strengthen the above result to arbitrary games, other rationality notions, and transfinite iterations of the elimination process. We also clarify what conclusions one can draw for the customary dominance notions that are not monotonic. The main tool is Tarski's Fixpoint Theorem.Comment: 20 page

    Formulas as Programs

    Get PDF
    We provide here a computational interpretation of first-order logic based on a constructive interpretation of satisfiability w.r.t. a fixed but arbitrary interpretation. In this approach the formulas themselves are programs. This contrasts with the so-called formulas as types approach in which the proofs of the formulas are typed terms that can be taken as programs. This view of computing is inspired by logic programming and constraint logic programming but differs from them in a number of crucial aspects. Formulas as programs is argued to yield a realistic approach to programming that has been realized in the implemented programming language ALMA-0 (Apt et al.) that combines the advantages of imperative and logic programming. The work here reported can also be used to reason about the correctness of non-recursive ALMA-0 programs that do not include destructive assignment.Comment: 34 pages, appears in: The Logic Programming Paradigm: a 25 Years Perspective, K.R. Apt, V. Marek, M. Truszczynski and D.S. Warren (eds), Springer-Verlag, Artificial Intelligence Serie
    corecore