72 research outputs found

    Birational invariants and A^1-connectedness

    Full text link
    We study some aspects of the relationship between A^1-homotopy theory and birational geometry. We study the so-called A^1-singular chain complex and zeroth A^1-homology sheaf of smooth algebraic varieties over a field k. We exhibit some ways in which these objects are similar to their counterparts in classical topology and similar to their motivic counterparts (the (Voevodsky) motive and zeroth Suslin homology sheaf). We show that if k is infinite the zeroth A^1-homology sheaf is a birational invariant of smooth proper varieties, and we explain how these sheaves control various cohomological invariants, e.g., unramified \'etale cohomology. In particular, we deduce a number of vanishing results for cohomology of A^1-connected varieties. Finally, we give a partial converse to these vanishing statements by giving a characterization of A^1-connectedness by means of vanishing of unramified invariants.Comment: 24 pages; To appear Crelle's journal. Part II of ArXiV v2 (regarding the Luroth problem) is being reworked and will be uploaded separately; the old version is still available at http://www-bcf.usc.edu/~aso

    Splitting vector bundles and A^1-fundamental groups of higher dimensional varieties

    Full text link
    We study aspects of the A^1-homotopy classification problem in dimensions >= 3 and, to this end, we investigate the problem of computing A^1-homotopy groups of some A^1-connected smooth varieties of dimension >=. Using these computations, we construct pairs of A^1-connected smooth proper varieties all of whose A^1-homotopy groups are abstractly isomorphic, yet which are not A^1-weakly equivalent. The examples come from pairs of Zariski locally trivial projective space bundles over projective spaces and are of the smallest possible dimension. Projectivizations of vector bundles give rise to A^1-fiber sequences, and when the base of the fibration is an A^1-connected smooth variety, the associated long exact sequence of A^1-homotopy groups can be analyzed in detail. In the case of the projectivization of a rank 2 vector bundle, the structure of the A^1-fundamental group depends on the splitting behavior of the vector bundle via a certain obstruction class. For projective bundles of vector bundles of rank >=, the A^1-fundamental group is insensitive to the splitting behavior of the vector bundle, but the structure of higher A^1-homotopy groups is influenced by an appropriately defined higher obstruction class.Comment: 38 pages; Significantly revised, comments still welcom

    Comparing Euler classes

    Full text link
    We establish the equality of two definitions of an Euler class in algebraic geometry: the first definition is as a "characteristic class" with values in Chow-Witt theory, while the second definition is as an "obstruction class." Along the way, we refine Morel's relative Hurewicz theorem in A^1-homotopy theory, and show how to define (twisted) Chow-Witt groups for geometric classifying spaces.Comment: 33 pages; Final version (before proofs). To appear Q. J. Mat
    corecore