4,105 research outputs found
Quantum Kaleidoscopes and Bell's theorem
A quantum kaleidoscope is defined as a set of observables, or states,
consisting of many different subsets that provide closely related proofs of the
Bell-Kochen-Specker (BKS) and Bell nonlocality theorems. The kaleidoscopes
prove the BKS theorem through a simple parity argument, which also doubles as a
proof of Bell's nonlocality theorem if use is made of the right sort of
entanglement. Three closely related kaleidoscopes are introduced and discussed
in this paper: a 15-observable kaleidoscope, a 24-state kaleidoscope and a
60-state kaleidoscope. The close relationship of these kaleidoscopes to a
configuration of 12 points and 16 lines known as Reye's configuration is
pointed out. The "rotations" needed to make each kaleidoscope yield all its
apparitions are laid out. The 60-state kaleidoscope, whose underlying
geometrical structure is that of ten interlinked Reye's configurations
(together with their duals), possesses a total of 1120 apparitions that provide
proofs of the two Bell theorems. Some applications of these kaleidoscopes to
problems in quantum tomography and quantum state estimation are discussed.Comment: Two new references (No. 21 and 22) to related work have been adde
Entanglement Patterns in Mutually Unbiased Basis Sets for N Prime-state Particles
A few simply-stated rules govern the entanglement patterns that can occur in
mutually unbiased basis sets (MUBs), and constrain the combinations of such
patterns that can coexist (ie, the stoichiometry) in full complements of p^N+1
MUBs. We consider Hilbert spaces of prime power dimension (as realized by
systems of N prime-state particles, or qupits), where full complements are
known to exist, and we assume only that MUBs are eigenbases of generalized
Pauli operators, without using a particular construction. The general rules
include the following: 1) In any MUB, a particular qupit appears either in a
pure state, or totally entangled, and 2) in any full MUB complement, each qupit
is pure in p+1 bases (not necessarily the same ones), and totally entangled in
the remaining p^N-p. It follows that the maximum number of product bases is
p+1, and when this number is realized, all remaining p^N-p bases in the
complement are characterized by the total entanglement of every qupit. This
"standard distribution" is inescapable for two qupits (of any p), where only
product and generalized Bell bases are admissible MUB types. This and the
following results generalize previous results for qubits and qutrits. With
three qupits there are three MUB types, and a number of combinations (p+2) are
possible in full complements. With N=4, there are 6 MUB types for p=2, but new
MUB types become possible with larger p, and these are essential to the
realization of full complements. With this example, we argue that new MUB
types, showing new entanglement characteristics, should enter with every step
in N, and when N is a prime plus 1, also at critical p values, p=N-1. Such MUBs
should play critical roles in filling complements.Comment: 27 pages, one figure, to be submitted to Physical Revie
Probing the Dark Ages at Z~20: The SCI-HI 21 cm All-Sky Spectrum Experiment
We present first results from the SCI-HI experiment, which we used to measure
the all-sky-averaged \cm brightness temperature in the redshift range
14.8<z<22.7. The instrument consists of a single broadband sub-wavelength size
antenna and a sampling system for real-time data processing and recording.
Preliminary observations were completed in June 2013 at Isla Guadalupe, a
Mexican biosphere reserve located in the Pacific Ocean. The data was cleaned to
excise channels contaminated by radio frequency interference (RFI), and the
system response was calibrated by comparing the measured brightness temperature
to the Global Sky Model of the Galaxy and by independent measurement of Johnson
noise from a calibration terminator. We present our results, discuss the
cosmological implications, and describe plans for future work.Comment: 5 pages, 5 figures, accepted for publication in ApJ Letter
Generating qudits with d=3,4 encoded on two-photon states
We present an experimental method to engineer arbitrary pure states of qudits
with d=3,4 using linear optics and a single nonlinear crystal.Comment: 4 pages, 1 eps figure. Minor changes. The title has been changed for
publication on Physical Review
Rapid-purification protocols for optical homodyning
We present a number of rapid-purification feedback protocols for optical
homodyne detection of a single optical qubit. We derive first a protocol that
speeds up the rate of increase of the average purity of the system, and find
that like the equivalent protocol for a non-disspative measurement, this
generates a deterministic evolution for the purity in the limit of strong
feedback. We also consider two analogues of the Wiseman-Ralph
rapid-purification protocol in this setting, and show that like that protocol
they speed up the average time taken to reach a fixed level of purity. We also
examine how the performance of these algorithms changes with detection
efficiency, being an important practical consideration.Comment: 6 pages, revtex4, 3 eps figure
On the structure of the sets of mutually unbiased bases for N qubits
For a system of N qubits, spanning a Hilbert space of dimension d=2^N, it is
known that there exists d+1 mutually unbiased bases. Different construction
algorithms exist, and it is remarkable that different methods lead to sets of
bases with different properties as far as separability is concerned. Here we
derive the four sets of nine bases for three qubits, and show how they are
unitarily related. We also briefly discuss the four-qubit case, give the
entanglement structure of sixteen sets of bases,and show some of them, and
their interrelations, as examples. The extension of the method to the general
case of N qubits is outlined.Comment: 16 pages, 10 tables, 1 figur
Solution to the Mean King's problem with mutually unbiased bases for arbitrary levels
The Mean King's problem with mutually unbiased bases is reconsidered for
arbitrary d-level systems. Hayashi, Horibe and Hashimoto [Phys. Rev. A 71,
052331 (2005)] related the problem to the existence of a maximal set of d-1
mutually orthogonal Latin squares, in their restricted setting that allows only
measurements of projection-valued measures. However, we then cannot find a
solution to the problem when e.g., d=6 or d=10. In contrast to their result, we
show that the King's problem always has a solution for arbitrary levels if we
also allow positive operator-valued measures. In constructing the solution, we
use orthogonal arrays in combinatorial design theory.Comment: REVTeX4, 4 page
- …
