324 research outputs found
Experimental constrains on shear-induced crystal breakage in magmas
International audienceCrystal breakage occurs along margins of conduit walls and basal zones of lava flows. It is usually interpreted as flow-related textures developed at large finite strains and strains rates. We have investigated the grain size and shape distributions in an experimentally deformed crystal-melt suspension in order to constrain the temperature T, the strain γ and the strain rate γr ranges of the crystal breakage process. The starting crystal-melt suspension is composed of a haplogranitic melt with 54 vol% alumina crystals. Torsion experiments were performed in a gas medium Paterson apparatus at 300 MPa confining pressure and subsolidus temperatures. Crystal size distribution and aspect ratio of alumina grains were measured on polished sections normal to the shear direction, i.e. from the centre to the rim of the deformed cylinders. A first minor occurrence of crystal breakage is evidenced in all experiments and low strains. It is related to intense stress localisation at some grain contacts in the initially connected solid framework. A second intense and penetrative crystal breakage process is observed for T≤ 550°C and γr > 6.2x10-4 s- 1. The evolution of the size distribution as a function of finite strain and the reduced aspect ratios of preserved largest crystals in intensely strained zones support that breakage occurs by abrasion of the larger crystals. This abrasion can be attributed to the partial stress propagation over both the melt and partially isolated crystals under visco-elastic conditions. Mechanical data show a transition from slight shear softening at low strain rates and highest temperatures to strain hardening for experiments that produced penetrative crystal breakage. The crystal-melt suspension exhibits a shear thinning behaviour with a stress exponent larger than 2.06 over the explored strain rate and temperature domain for the experiments without intensive crystal breakage. Our results are applicable to the interpretation of the crystal breakage often observed at the base of lava flows, in domes, and near conduit walls. This experimental reproduction of a process observed in nature is important because the controls of stress-induced breakage we quantified are also key parameters governing magma transport
Complex flow in lowest crustal, anastomosing mylonites: Strain gradients in a Kohistan gabbro, northern Pakistan
International audienceStrain localization in near paleo-Moho metagabbros of the Kohistan Arc, northern Pakistan, produced anastomosing shear zones. The two-dimensional (2-D) analysis of strain gradients in planes parallel to the general flow direction reveals simple shear strain >7 combined with about 50% surface loss. The pargasite-garnet assemblage of the mylonite has a density 2.8% higher than the protolith, which is insufficient to account for the measured surface loss. Furthermore, major and trace element compositions of the gabbro and the mylonite indicate isochemical deformation. Average V p and acoustic impedance measured at room temperature and up to 300 MPa increase from gabbro through the gradient zone to mylonite; they are consistent with density measurements. The three-dimensional analysis of shape-preferred orientation and lattice-preferred orientation of sheared and synkinematic minerals indicates that the 2-D surface loss reflects sideways and lengthwise material transfer. Sideways and lengthwise material transfers take place in widening and lengthening mylonites, respectively. The anastomosing shear zone pattern impels this complexity of the regional flow. We conclude that shear zones with a thinning component are likely representative of deep crustal flow in other tectonic environments
POLYCENTRISME AÉROPORTUAIRE ET POLYCENTRISME URBAIN SUR LES FRONTIÈRES NORD-ORIENTALES DE LA FRANCE
C'est à travers le prisme de l'accessibilité et des réseaux de transports aériens de l'Est de la France qu'a été abordée la question du devenir du polycentrisme urbain, dans un espace que le jeu des frontières nationales a façonné dans le temps long. Désormais traversées par les multiples réseaux, ces frontières sont vouées à l'effacement. Les réseaux sont en effet généralement considérés comme des effaceurs de frontières alors qu'à l'inverse, ces dernières sont généralement considérées comme des barrières destinées à empêcher l'accès, à faire obstacle aux passages et aux circulations
Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano, Montserrat: II. Overpressure and depth distributions
International audienceA type example of Vulcanian eruptive dynamics is the series of 88 explosions that occurred between August and October 1997 at Soufrière Hills volcano on Montserrat Island. These explosions are interpreted to be caused by the pressurization of a conduit by a shallow highly crystalline and degassed magma plug. We test such an interpretation by combining the pressures and porosities of the pre-explosive magma column proposed by Burgisser et al. (2010, doi:10.1016/j.jvolgeores.2010.04.008) into a physical model that reconstructs a depth-referenced density profile of the column for four mechanisms of pressure buildup. Each mechanism yields a different overpressure profile: 1) gas accumulation, 2) conduit wall elasticity, 3) microlite crystallization, and 4) magma flowage. For the first three mechanisms, the three-part vertical layering of the conduit prior to explosion was spatially distributed as a dense cap atop the conduit with a thickness of a few tens of meters, a transition zone of 400–700 m with heterogeneous vesicularities, and, at greater depth, a more homogeneous, low-porosity zone that brings the total column length to ~ 3.5 km. A shorter column can be obtained with mechanism 4: a dense cap of less than a few meters, a heterogeneous zone of 200–500 m, and a total column length as low as 2.5 km. Inflation/deflation cycles linked to a periodic overpressure source offer a dataset that we use to constrain the four overpressure mechanisms. Magma flowage is sufficient to cause periodic edifice deformation through semi-rigid conduit walls and build overpressures able to trigger explosions. Gas accumulation below a shallow plug is also able to build such overpressures and can occur regardless of magma flowage. The concurrence of these three mechanisms offers the highest likelihood of building overpressures leading to the 1997 explosion series. We also explore the consequences of sudden (eruptive) overpressure release on our magmatic columns to assess the role of syn-explosive vesiculation and pre-fragmentation column expansion. We find that large shallow overpressures and efficient syn-explosive vesiculation cause the most dramatic pre-fragmentation expansion. This leads us to depict two end-member pictures of a Vulcanian explosion. The first case corresponds to the widely accepted view that the downward motion of a fragmentation front controls column evacuation. In the second case, syn-explosive column expansion just after overpressure release brings foamed-up magma up towards an essentially stationary and shallow fragmentation front
Experimental simulation of magma mixing at high pressure
International audienceMagma mixing features are observed in many plutonic and volcanic environments. They result from the juxtaposition of two chemically contrasted magmas, usually during the replenishment of a magmatic reservoir, but also syn-eruptively within the conduit. Despite its ubiquity, only a few experimental studies have explored mixing between magmas. Existing data have been mostly acquired at atmospheric pressure and high shear rates (> 10- 1 s- 1), which differ from those accompanying magma mixing in reservoirs. To fill this gap, we performed high pressure mixing experiments at strain rates ranging from 4.10- 4 to 1.10- 3 s- 1. Layers of a synthetic crystal-free haplotonalite and a natural partially-molten basalt were juxtaposed in a Paterson apparatus at 300 MPa, and deformed between 900 and 1200 °C. The experiments shed light on the first stages of magma mixing and illustrate the role and behavior of crystals, either pre-existing or newly grown. Experiments evidence a rheological threshold for mafic material disruption, which sets in abruptly as its melt fraction exceeds 50%, which in the experiments occurs in the narrow temperature interval 1160-1170 °C. Below this threshold, plagioclase crystals in the mafic magma form a rigid touching network and all the deformation is accommodated by the less viscous felsic layer. Above it the crystal network collapses, allowing typical mingling/mixing features to appear altogether, such as enclaves, melt filaments or single xenocrysts isolated into the felsic end-member, coexisting with newly grown phases (plagioclase and pyroxene) whose compositions spread out over considerable ranges. The pre-existing fabric of the mafic magma is only slightly affected by deformation, altogether providing few clues on either the regime or geometry of applied deformation during the magmatic stage
Porosity redistribution enhanced by strain localization in crystal-rich magmas
International audienceMagma degassing, characterized by changes in permeability and porosity distribution, has a crucial control on the style of eruption. During ascent, magma might develop large porosities and crystallise while it is subjected to shear. Shear, in turn, enhances complex fabrics that result from the reorganization of the different phases (crystals, gas, melt). Such fabrics have not yet been evaluated experimentally on a 3-phase system. We performed torsion experiments on a synthetic crystal-rich hydrous magma at subsolidus conditions with 11 vol.% porosity to establish a link between strain partitioning and porosity redistribution. Crystals induce non-Newtonian deformation, resulting in localization of the shear strain. 3-D microtomography and 2-D Scanning Electron Microprobe (SEM) imaging show gas accumulation in local microstructures caused by shear-induced crystal fabric. Our data show that strain localization is a mechanism that could enable magma degassing at very low vesicularity
Rheology and microstructure of experimentally deformed plagioclase suspensions
International audienceWe present the result of the first deformation experiments at high-temperatures and high-pressures on synthetic magmatic suspensions of strongly anisometric particles. The results highlight the interplay between the rheological response and the development of microstructures and they demonstrate the critical importance of the shape of crystals on the mechanical behaviour of magmas. Plagioclase suspensions with two crystal fractions (0.38 and 0.52) were deformed both in compression and in torsion in a Paterson apparatus. With increasing crystal fraction, the rheological behaviour of the magmatic suspension evolves from nearly steady-state flow to shear weakening, this change being correlated with a microstructural evolution from a pervasive strain to a strain partitioning fabric. Magmatic suspensions of plagioclase have viscosities approximately five orders of magnitude higher than suspensions of equivalent crystallinities made of isometric particles such as quartz
Quantitative textural analysis of Vulcanian pyroclasts (Montserrat) using multi-scale X-ray computed microtomography: comparison with results from 2D image analysis
International audienceX-ray computed microtomography (μCT) was carried out on four pyroclasts from the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat. Three-dimensional data from multiple image stacks with different spatial resolutions (0.37, 4-8, and 17.4 μm px−1) were combined to generate size distributions of vesicles, inter-vesicle throats, crystals, and Fe-Ti oxides over a 3.4-860-μm size range, and to compare the results with those obtained by 2D image analysis on the same samples. Qualitative textural observations are in good agreement with those made in 2D, but μCT provides better resolution of textural features and spatial relationships. Calculation of size distributions requires automated decoalescence of the connected vesicle network. Problems related to this process, in part due to the high porosity of pumice, result in potential artefacts in the calculated size distributions, which are discussed in detail. The main modes of the 3D vesicle volume distributions are systematically shifted to larger sizes compared with those of the 2D distributions. Sample total vesicularities obtained in 3D are within 13 vol.% of those found in 2D, and within 10 vol.% of those measured by He-pycnometry. Total number densities of vesicles and Fe-Ti oxides from the two methods are consistent only to the first order, 3D values ranging from 37% to 309% of those in 2D. Vesicle coalescence, investigated by examining inter-vesicle throat size distributions, occurred in all pyroclasts between neighbouring vesicles of many sizes. The larger the vesicle, the more connected it is
Bubble nucleation, growth and coalescence during the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat
International audienceSoufrière Hills Volcano had two periods of repetitive Vulcanian activity in 1997. Each explosion discharged the contents of the upper 0.5–2 km of the conduit as pyroclastic flows and fallout: frothy pumices from a deep, gas-rich zone, lava and breadcrust bombs from a degassed lava plug, and dense pumices from a transition zone. Vesicles constitute 1–66 vol.% of breadcrust bombs and 24–79% of pumices, all those larger than a few tens of µm being interconnected. Small vesicles ( few hundreds of µm) in pumices are interpreted as pre-dating explosion, implying pre-explosive conduit porosities up to 55%. About a sixth of large vesicles in pumices, and all those in breadcrust bombs, are angular voids formed by syn-explosive fracturing of amphibole phenocrysts. An intermediate-sized vesicle population formed by coalescence of the small syn-explosive bubbles. Bubble nucleation took place heterogeneously on titanomagnetite, number densities of which greatly exceed those of vesicles, and growth took place mainly by decompression. Development of pyroclast vesicle textures was controlled by the time interval between the onset of explosion–decompression and surface quench in contact with air. Lava-plug fragments entered the air quickly after fragmentation (not, vert, similar 10 s), so the interiors continued to vesiculate once the rinds had quenched, forming breadcrust bombs. Deeper, gas-rich magma took longer (not, vert, similar 50 s) to reach the surface, and vesiculation of resulting pumice clasts was essentially complete prior to surface quench. This accounts for the absence of breadcrusting on pumice clasts, and for the textural similarity between pyroclastic flow and fallout pumices, despite different thermal histories after leaving the vent. It also allowed syn-explosive coalescence to proceed further in the pumices than in the breadcrust bombs. Uniaxial boudinage of amphibole phenocrysts in pumices implies significant syn-explosive vesiculation even prior to magma fragmentation, probably in a zone of steep pressure gradient beneath the descending fragmentation front. Syn-explosive decompression rates estimated from vesicle number densities (> 0.3–6.5 MPa s− 1) are consistent with those predicted by previously published numerical models
Impact of gneissic layering and localized incipient melting upon melt flow during experimental deformation of migmatites
International audienceIn this study, we test experimentally the role of compositional layering as a key parameter for controlling melt flow in a natural migmatite during coaxial deformation. We performed in – situ pure-shear experiments on two natural gneisses. The first gneiss is weakly foliated with minerals homogenously distributed. The second gneiss shows a pronounced compositional layering of alternating quartz – feldspar – rich and biotite – muscovite – rich layers. Experimental conditions were selected to obtain homogeneous melt distribution in the homogeneous gneiss and heterogeneous melt distribution in the layered gneiss. Initial melt distribution is not modified by deformation in experiments on the homogeneous gneiss, implying that melting products did not migrate from their initiation sites. In contrast, melt flowed in shear zones or in inter-boudin positions during experimental deformation of the heterogeneous gneiss. These experiments attest to the strong influence of initial gneissic layering on melting pattern, melt segregation and flow during deformation of partially molten rocks
- …
