12,005 research outputs found
Dynamical Models of Extreme Rolling of Vessels in Head Waves
Rolling of a ship is a swinging motion around its length axis. In particular vessels transporting containers may show large amplitude roll when sailing in seas with large head waves. The dynamics of the ship is such that rolling interacts with heave being the motion of the mass point of the ship in vertical direction. Due to the shape of the hull of the vessel its heave is influenced considerably by the phase of the wave as it passes the ship. The interaction of heave and roll can be modeled by a mass-spring-pendulum system. The effect of waves is then included in the system by a periodic forcing term. In first instance the damping of the spring can be taken infinitely large making the system a pendulum with an in vertical direction periodically moving suspension. For a small angular deflection the roll motion is then described by the Mathieu equation containing a periodic forcing. If the period of the solution of the equation without forcing is about twice the period of the forcing then the oscillation gets unstable and the amplitude starts to grow. After describing this model we turn to situation that the ship is not anymore statically fixed at the fluctuating water level. It may move up and down showing a motion
modeled by a damped spring. One step further we also allow for pitch, a swinging motion around a horizontal axis perpendicular to the ship. It is recommended to investigate the way waves may directly drive this mode and to determine the amount of energy that flows along this path towards the roll mode. Since at sea waves are a superposition of waves with different wavelengths, we also pay attention to the properties of such a type of forcing containing stochastic elements. It is recommended that as a measure for the
occurrence of large deflections of the roll angle one should take the expected time for which a given large deflection may occur instead of the mean amplitude of the deflection
Rational's experience using Ada for very large systems
The experience using the Rational Environment has confirmed the advantages forseen when the project was started. Interactive syntatic and semantic information makes a tremendous difference in the ease of constructing programs and making changes to them. The ability to follow semantic references makes it easier to understand exisiting programs and the impact of changes. The integrated debugger makes it much easier to find bugs and test fixes quickly. Taken together, these facilites have helped greatly in reducing the impact of ongoing maintenance of the ability to produce a new code. Similar improvements are anticipated as the same level of integration and interactivity are achieved for configuration management and version control. The environment has also proven useful in introducing personnel to the project and existing personnel to new parts of the system. Personnel benefit from the assistance with syntax and semantics; everyone benefits from the ability to traverse and understand the structure of unfamiliar software. It is often possible for someone completely unfamiliar with a body of code to use these facilities, to understand it well enough to successfully with a body of code to use these facilities to understand it well enough to successfully diagnose and fix bugs in a matter of minutes
Formation and Function of the Rbl2p-beta-Tubulin Complex
The yeast protein Rbl2p suppresses the deleterious effects of excess beta-tubulin as efficiently as does alpha-tubulin. Both in vivo and in vitro, Rbl2p forms a complex with beta-tubulin that does not contain alpha-tubulin, thus defining a second pool of beta-tubulin in the cell. Formation of the complex depends upon the conformation of beta-tubulin. Newly synthesized beta-tubulin can bind to Rbl2p before it binds to alpha-tubulin. Rbl2p can also bind beta-tubulin from the alpha/beta-tubulin heterodimer, apparently by competing with alpha-tubulin. The Rbl2p-beta-tubulin complex has a half-life of ~2.5 h and is less stable than the alpha/beta-tubulin heterodimer. The results of our experiments explain both how excess Rbl2p can rescue cells overexpressing beta-tubulin and how it can be deleterious in a wild-type background. They also suggest that the Rbl2p-beta-tubulin complex is part of a cellular mechanism for regulating the levels and dimerization of tubulin chains
Solidification in soft-core fluids: disordered solids from fast solidification fronts
Using dynamical density functional theory we calculate the speed of
solidification fronts advancing into a quenched two-dimensional model fluid of
soft-core particles. We find that solidification fronts can advance via two
different mechanisms, depending on the depth of the quench. For shallow
quenches, the front propagation is via a nonlinear mechanism. For deep
quenches, front propagation is governed by a linear mechanism and in this
regime we are able to determine the front speed via a marginal stability
analysis. We find that the density modulations generated behind the advancing
front have a characteristic scale that differs from the wavelength of the
density modulation in thermodynamic equilibrium, i.e., the spacing between the
crystal planes in an equilibrium crystal. This leads to the subsequent
development of disorder in the solids that are formed. For the one-component
fluid, the particles are able to rearrange to form a well-ordered crystal, with
few defects. However, solidification fronts in a binary mixture exhibiting
crystalline phases with square and hexagonal ordering generate solids that are
unable to rearrange after the passage of the solidification front and a
significant amount of disorder remains in the system.Comment: 18 pages, 14 fig
Radioactive Needlework, Reconstruction of needle-positions in radiation treatment
Nucletron presented a medical problem to the SWI 2006: how to find needles used for cancer treatment in a prostate? More concretely: how to find the positions of these needles from distorted images from an ultrasound probe? Section 1 explains the background of this problem. In Section 2 we deal with physical explanations for the distortions. In Section 3 we give a brief overview of medical imaging and explain which techniques we used to clean up the images
MECHANISMS OF DISEASE Acute Oxygen-Sensing Mechanisms
JOSEPH PRIESTLEY, ONE OF THE THREE SCIENTISTS CREDITED WITH THE discovery of oxygen, described the death of mice that were deprived of oxygen. However, he was also well aware of the toxicity of too much oxygen, stating, “For as a candle burns much faster in dephlogisticated [oxygen enriched] than in common air, so we might live out too fast, and the animal powers be too soon exhausted in this pure kind of air. A moralist, at least, may
say, that the air which nature has provided for us is as good as we deserve.”1
In this review we examine the remarkable mechanisms by which different organs detect and respond to acute changes in oxygen tension. Specialized tissues that sense the local oxygen tension include glomus cells of the carotid body, neuroepithelial bodies in the lungs, chromaffin cells of the fetal adrenal medulla, and smooth-muscle cells of the resistance pulmonary arteries,
fetoplacental arteries, systemic arteries, and the ductus arteriosus. Together, they constitute a specialized homeostatic oxygen-sensing system. Although all tissues are sensitive to severe hypoxia, these specialized tissues respond rapidly to moderate changes in oxygen tension within the physiologic range (roughly 40 to 100 mm Hg in an adult and 20 to 40 mm Hg in a fetus)Junta de Andalucí
Intrinsic point defects and volume swelling in ZrSiO4 under irradiation
The effects of high concentration of point defects in crystalline ZrSiO4 as
originated by exposure to radiation, have been simulated using first principles
density functional calculations. Structural relaxation and vibrational studies
were performed for a catalogue of intrinsic point defects, with different
charge states and concentrations. The experimental evidence of a large
anisotropic volume swelling in natural and artificially irradiated samples is
used to select the subset of defects that give similar lattice swelling for the
concentrations studied, namely interstitials of O and Si, and the anti-site
Zr(Si), Calculated vibrational spectra for the interstitials show additional
evidence for the presence of high concentrations of some of these defects in
irradiated zircon.Comment: 9 pages, 7 (color) figure
- …
