15 research outputs found
Where have all the petrels gone? Forty years (1978–2020) of Wilson’s Storm Petrel (Oceanites oceanicus) population dynamics at King George Island (Isla 25 de Mayo, Antarctica) in a changing climate
Numerous seabird species are experiencing population declines, and this trend is expected to continue or even accelerate in the future. To understand the effects of environmental change on seabird populations, long-term studies are vital, but rare. Here, we present over four decades (1978–2020) of population dynamic and reproductive performance data of Wilson’s Storm Petrels (Oceanites oceanicus) from King George Island (Isla 25 de Mayo), Antarctica. We determined temporal trends in population size, breeding output, and chick growth rates, and related interannual variation in these variables to various environmental variables. Our study revealed a decline of 90% in population size of Wilson’s Storm Petrels in two colonies, and considerable changes in breeding output and chick growth rates. Temporal changes in breeding demographics were linked to interannual environmental variation, either causing changes in food availability (particularly Antarctic krill, Euphausia superba) or in nest burrow accessibility due to snow blocking the entrance. With the expected rise in air and sea surface temperatures, the predicted increases in precipitation over the Antarctic Peninsula will likely lead to increased snowstorm prevalence. Additionally, the rising temperatures will likely reduce food availability due to reduced sea ice cover in the wintering grounds of Antarctic krill, or by changing phyto- and zooplankton community compositions. The ongoing environmental changes may thus lead to a further population decline, or at the very least will not allow the population to recover. Monitoring the population dynamics of Antarctic seabirds is vital to increase our understanding of climate change-induced changes in polar food webs
Fungal Planet description sheets: 154–213
Novel species of microfungi described in the present study include the following from South Africa: Camarosporium aloes, Phaeococcomyces aloes and Phoma aloes from Aloe, C. psoraleae, Diaporthe psoraleae and D. psoraleae-pinnatae from Psoralea, Colletotrichum euphorbiae from Euphorbia, Coniothyrium prosopidis and Peyronellaea prosopidis from Prosopis, Diaporthe cassines from Cassine, D. diospyricola from Diospyros, Diaporthe maytenicola from Maytenus, Harknessia proteae from Protea, Neofusicoccum ursorum and N. cryptoaustrale from Eucalyptus, Ochrocladosporium adansoniae from Adansonia, Pilidium pseudoconcavum from Greyia radlkoferi, Stagonospora pseudopaludosa from Phragmites and Toxicocladosporium ficiniae from Ficinia. Several species were also described from Thailand, namely: Chaetopsina pini and C. pinicola from Pinus spp., Myrmecridium thailandicum from reed litter, Passalora pseudotithoniae from Tithonia, Pallidocercospora ventilago from Ventilago, Pyricularia bothriochloae from Bothriochloa and Sphaerulina rhododendricola from Rhododendron. Novelties from Spain include Cladophialophora multiseptata, Knufia tsunedae and Pleuroascus rectipilus from soil and Cyphellophora catalaunica from river sediments. Species from the USA include Bipolaris drechsleri from Microstegium, Calonectria blephiliae from Blephilia, Kellermania macrospora (epitype) and K. pseudoyuccigena from Yucca. Three new species are described from Mexico, namely Neophaeosphaeria agaves and K. agaves from Agave and Phytophthora ipomoeae from Ipomoea. Other African species include Calonectria mossambicensis from Eucalyptus (Mozambique), Harzia cameroonensis from an unknown creeper (Cameroon), Mastigosporella anisophylleae from Anisophyllea (Zambia) and Teratosphaeria terminaliae from Terminalia (Zimbabwe). Species from Europe include Auxarthron longisporum from forest soil (Portugal), Discosia pseudoartocreas from Tilia (Austria), Paraconiothyrium polonense and P. lycopodinum from Lycopodium (Poland) and Stachybotrys oleronensis from Iris (France). Two species of Chrysosporium are described from Antarctica, namely C. magnasporum and C. oceanitesii. Finally, Licea xanthospora is described from Australia, Hypochnicium huinayensis from Chile and Custingophora blanchettei from Uruguay. Novel genera of Ascomycetes include Neomycosphaerella from Pseudopentameris macrantha (South Africa), and Paramycosphaerella from Brachystegia sp. (Zimbabwe). Novel hyphomycete genera include Pseudocatenomycopsis from Rothmannia (Zambia), Neopseudocercospora from Terminalia (Zambia) and Neodeightoniella from Phragmites (South Africa), while Dimorphiopsis from Brachystegia (Zambia) represents a novel coelomycetous genus. Furthermore, Alanphillipsia is introduced as a new genus in the Botryosphaeriaceae with four species, A. aloes, A. aloeigena and A. aloetica from Aloe spp. and A. euphorbiae from Euphorbia sp. (South Africa). A new combination is also proposed for Brachysporium torulosum (Deightoniella black tip of banana) as Corynespora torulosa. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa
Agricultural landscapes as habitat for birds in central Chile
Background: Understanding the role of agroecosystems as habitat for wildlife is crucial for long-term conservation planning, as different crop stratification and landscape elements can influence bird communities, which are also affected by seasonality. The goal of our study was to determine how agricultural landscapes varying in land cover characteristics affect bird richness and abundance. Bird surveys were conducted at 110 locations within agricultural landscapes in central Chile. The surveyed areas were characterized by land cover at two scales (50 and 500 m radii) through direct observation and photo-interpretation, during winter and spring seasons. Generalized Linear Mixed Models were used to evaluate the effects of different agricultural land covers on bird species and communities.
Results: Our results show that birds were more abundant during winter, in particular for insectivorous and granivorous birds, and that bird species richness was significantly increased due to cover provided by hedgerows at the plot scale.
Conclusions: We found that abundance of some bird species in agroecosystems in central Chile was higher in winter than in spring, and that overall bird richness was favored by structural diversity including non-crop structures such as hedgerows, which thus may be relevant for improving bird conservation management in temperate agroecosystems. Our results suggest that native vegetation proximity and area may affect seasonal changes in bird communities at larger scales, relationships which warrant further study.Chilean Commission for Scientific and Technological Research (CONICYT)
2209010
Identifying the Big Questions in paleontology: a community-driven project
Paleontology provides insights into the history of the planet, from the origins of life billions of years ago to the biotic changes of the Recent. The scope of paleontological research is as vast as it is varied, and the field is constantly evolving. In an effort to identify “Big Questions” in paleontology, experts from around the world came together to build a list of priority questions the field can address in the years ahead. The 89 questions presented herein (grouped within 11 themes) represent contributions from nearly 200 international scientists. These questions touch on common themes including biodiversity drivers and patterns, integrating data types across spatiotemporal scales, applying paleontological data to contemporary biodiversity and climate issues, and effectively utilizing innovative methods and technology for new paleontological insights. In addition to these theoretical questions, discussions touch upon structural concerns within the field, advocating for an increased valuation of specimen-based research, protection of natural heritage sites, and the importance of collections infrastructure, along with a stronger emphasis on human diversity, equity, and inclusion. These questions offer a starting point—an initial nucleus of consensus that paleontologists can expand on—for engaging in discussions, securing funding, advocating for museums, and fostering continued growth in shared research directions.
La paleontología permite conocer la historia del planeta, desde los orígenes de la vida hace miles de millones de años hasta los cambios bióticos de épocas recientes. El ámbito de la investigación paleontológica es tan vasto como variado y está en constante evolución. En un esfuerzo por identificar las “grandes preguntas” de la paleontología, expertos de todo el mundo se reunieron para elaborar una lista de cuestiones prioritarias que el campo puede abordar en los próximos años. Las 89 preguntas aquí presentadas (agrupadas en 11 temas) representan las contribuciones de casi 200 científicos internacionales. Estas preguntas se refieren a temas comunes, entre los que se incluyen los motores y patrones de la biodiversidad, la integración de diferentes tipos de datos a lo largo de escalas espacio-temporales, la aplicación de datos paleontológicos para resolver cuestiones contemporáneas de biodiversidad y clima, y la utilización eficaz de métodos y tecnologías innovadoras para obtener nuevos conocimientos paleontológicos. Además de estos interrogantes teóricos, los debates abordan inquietudes estructurales dentro del campo, y abogan por una mayor valoración de la investigación basada en especímenes, la protección de los sitios del patrimonio natural y la importancia de la infraestructura de las colecciones; junto con un mayor énfasis en la diversidad humana, la equidad y la inclusión. Estas preguntas representan un punto de partida—un núcleo inicial de consenso que los paleontólogos pueden ampliar—para fomentar debates, obtener financiación, abogar por el apoyo a los museos y estimular el crecimiento continuo en direcciones de investigación compartidas.
La paleontologia offre spunti fondamentali per comprendere la storia del pianeta, dalle origini della vita miliardi di anni fa fino ai cambiamenti biotici più recenti. L’ambito della ricerca paleontologica è tanto vasto quanto diversificato e rappresenta un campo in continua evoluzione. In questo studio, esperti provenienti da tutto il mondo si sono riuniti per redigere un elenco di “Grandi Domande” prioritarie che la paleontologia potrà affrontare nei prossimi anni. Le 89 domande qui presentate, raggruppate in 11 temi, rappresentano il contributo di circa 200 scienziati internazionali. Queste domande riguardano tematiche come i meccanismi e i pattern di biodiversità, l’integrazione di varie tipologie di dati su scale spazio-temporali multiple, l’applicazione delle conoscenze paleontologiche ai problemi attuali della crisi climatica e della biodiversità, e l’uso efficace di metodi e tecnologie innovative per ottenere nuove intuizioni paleontologiche. Oltre a questi temi teorici, la discussione si focalizza su problematiche strutturali del campo, promuovendo una maggiore valorizzazione della ricerca basata sugli esemplari, la protezione dei siti di interesse culturale e paleontologico, e l’importanza delle infrastrutture per preservare le collezioni, insieme a una crescente enfasi su un apporto multiculturale, equo e inclusivo. Queste domande costituiscono un punto di partenza—un nucleo di consenso iniziale che i paleontologi possono espandere—per avviare discussioni, ottenere finanziamenti, promuovere i musei e favorire una crescita continua verso direzioni condivise di ricerca
Identifying the Big Questions in paleontology: a community-driven project
Paleontology provides insights into the history of the planet, from the origins of life billions of years ago to the biotic changes of the Recent. The scope of paleontological research is as vast as it is varied, and the field is constantly evolving. In an effort to identify “Big Questions” in paleontology, experts from around the world came together to build a list of priority questions the field can address in the years ahead. The 89 questions presented herein (grouped within 11 themes) represent contributions from nearly 200 international scientists. These questions touch on common themes including biodiversity drivers and patterns, integrating data types across spatiotemporal scales, applying paleontological data to contemporary biodiversity and climate issues, and effectively utilizing innovative methods and technology for new paleontological insights. In addition to these theoretical questions, discussions touch upon structural concerns within the field, advocating for an increased valuation of specimen-based research, protection of natural heritage sites, and the importance of collections infrastructure, along with a stronger emphasis on human diversity, equity, and inclusion. These questions offer a starting point—an initial nucleus of consensus that paleontologists can expand on—for engaging in discussions, securing funding, advocating for museums, and fostering continued growth in shared research directions
Is It Possible for a Procellariiform to Raise Two Chicks? a Case of Chick Adoption in Southern Giant Petrels Macronectes Giganteus in the South Shetland Islands, Antarctica
Pertussis epidemiology in Argentina: trends over 2004-2007
Fil: Hozbor, Daniela. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Mooi, F. National Institute for Public Health and the Environment,.Netherlands Centre for Infectious Diseases Control. Laboratory for Infectious Diseases and Screening (LIS); Países Bajos.Fil: Flores, D. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Weltman, Gabriela. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Bottero, D. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Fossati, Sofía. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Lara, Claudia. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Gaillard, M. E. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Pianciola, Luis. Subsecretaría de Salud de Neuquén. Laboratorio Central, Neuquén; Argentina.Fil: Zurita, E. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Fioriti, A. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Archuby, Daniela. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Galas, Marcelo F. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Binsztein, Norma. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Regueira, Mabel. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Bacteriología. Servicio de Bacteriología Clínica; Argentina.Fil: Castuma, C. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Fingermann, Matías. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Fil: Graieb, A. Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina.Objectives
Pertussis continues causing significant morbidity and mortality worldwide. Although its epidemiology has been studied in many developed countries, the current pertussis situation in South America is scarcely known. This review summarizes the most important recent data concerning pertussis in a country of South America, Argentina.
Methods
CDC criteria were used for pertussis diagnosis. Proportion of pertussis cases by age, immunization status, and immunization coverage rate evaluated at the Argentinean National Pertussis Reference Centers was reported. Bordetella pertussis isolates were characterized and compared with vaccine strains.
Results
From 2002 to nowadays, a steady increase of pertussis cases was observed. Most of these cases correspond to patients younger than six months old that received less than three doses of vaccine. However, cases in adolescent and adults have also been detected. For this situation, which is not peculiar to Argentina, several explanations have been proposed. Among them, the inability of current vaccines to induce long-lasting immunity is the most widely accepted as a cause of pertussis resurgence. Furthermore, antigenic divergence between local clinical isolates and vaccine strains may have aggravated the effect of waning immunity.
Conclusions
Pertussis is an important problem for public health in Argentina. Divergence between vaccine strains and local isolates could contribute to the described pertussis epidemiology
Correction: Where have all the petrels gone? Forty years (1978–2020) of Wilson’s Storm Petrel (Oceanites oceanicus) population dynamics at King George Island (Isla 25 de Mayo, Antarctica) in a changing climate
Ausems ANMA, Kuepper ND, Archuby D, et al. Correction: Where have all the petrels gone? Forty years (1978–2020) of Wilson’s Storm Petrel (Oceanites oceanicus) population dynamics at King George Island (Isla 25 de Mayo, Antarctica) in a changing climate. Polar Biology . 2024;47(2):187
Where have all the petrels gone? Forty years (1978 - 2020) of Wilson's Storm Petrel (Oceanites oceanicus) population dynamics at King George Island (Islas 25 de Mayo, Antarctica) in a changing climate - Colony
This data set describes the population dynamics of Wilson's Storm Petrels (Oceanites oceanicus) colonies at King George Island (Isla 25 de Mayo, Antarctica) over a forty year period (1978 – 2020). It includes all available data on Wilson's Storm Petrels from two colonies: around the Argentinian Base Carlini (62°14′S, 58°40′W; CA, formerly called Base Jubany) and the Henryk Arctowski Polish Antarctic Station (62°09′S, 58°27′W; HA). Data on population productivity (number of nests, eggs, chicks and fledglings) was collected by regular visits to the colonies and searching for nest burrows, or monitoring of the egg or chick if found. Data on adult abundance and estimated age categories (i.e., presence of foot spots; Quillfeldt et al., 2000) were collected at CA by using the same size mistnet every study year in the same location within the breeding colony. Chicks were measured regularly (varying intervals depending on the study) at both CA and HA. Chick tarsus was measured using callipers (vernier or digital depending on the study year) to the nearest 0.1 mm, chick wing length was measured using wing rulers to the nearest 1 mm, and chick body mass was measured using mechanical or digital scales depending on the study year to the nearest 0.1 g. Chick growth rates were calculated based on the linear growth period following Ausems et al. (2020). Chick food loads (g) were recorded at CA and determined based on changes in chick body mass on consecutive days (Gladbach et al., 2009; Kuepper et al., 2018)
