96 research outputs found

    Sweeteners: erythritol, xylitol and cardiovascular risk - friend or foe?

    Get PDF
    Hyperglycemia harms vascular health and promotes platelet aggregation. Reducing glucose concentration is crucial, and sugar alcohols may aid this effort. Used for over 50 years in food, cosmetic, and pharmaceutical industries, erythritol and xylitol minimally affect plasma glucose and insulin levels while promoting the release of beneficial gastrointestinal hormones such as e.g. glucagon-like peptide-1 (GLP-1). These properties make them particularly appealing for individuals with diabetes, obesity, and metabolic syndrome. Recent pilot trials suggest that xylitol and erythritol might temporarily alter platelet aggregation. Studies on critically ill patients receiving large intravenous doses and Mendelian randomization trials do not link sugar alcohols to significant cardiovascular risks. Sugar alcohols are also endogenously produced in the body, and while their increased production under certain conditions is not fully understood, it requires further research. This review discusses the physiology and metabolism of erythritol and xylitol, and other sugar alcohols, their roles in metabolomic profiling, effects on platelet aggregation and cardiovascular risk, related genetic disorders, vascular impacts, and usage in critically ill patients

    Effect of peritoneal dialysis fluid containing osmo-metabolic agents on human endothelial cells

    Get PDF
    BACKGROUND: The use of glucose as the only osmotic agent in peritoneal dialysis (PD) solutions (PDSs) is believed to exert local (peritoneal) and systemic detrimental actions, particularly in diabetic PD patients. To improve peritoneal biocompatibility, we have developed more biocompatible PDSs containing xylitol and carnitine along with significantly less amounts of glucose and have tested them in cultured Human Vein Endothelial Cells (HUVECs) obtained from the umbilical cords of healthy (C) and gestational diabetic (GD) mothers. METHODS: Primary C- and GD-HUVECs were treated for 72 hours with our PDSs (xylitol 0.7% and 1.5%, whereas carnitine and glucose were fixed at 0.02% and 0.5%, respectively) and two glucose-based PDSs (glucose 1.36% or 2.27%). We examined their effects on endothelial cell proliferation (cell count), viability (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay), intracellular nitro-oxidative stress (peroxynitrite levels), Vascular Cell Adhesion Molecule-1 and Intercellular Adhesion Molecule-1 membrane exposure (flow cytometry), and HUVEC-monocyte interactions (U937 adhesion assay). RESULTS: Compared to glucose-based PDSs, our in vitro studies demonstrated that the tested PDSs did not change the proliferative potential both in C- and GD-HUVECs. Moreover, our PDSs significantly improved endothelial cell viability, compared to glucose-based PDSs and basal condition. Notably, glucose-based PDSs significantly increased the intracellular peroxynitrite levels, Vascular Cell Adhesion Molecule-1 and Intercellular Adhesion Molecule-1 membrane exposure, and endothelial cell–monocyte interactions in both C- and GD-HUVECs, as compared with our experimental PDSs. CONCLUSION: Present results show that in control and diabetic human endothelial cell models, xylitol–carnitine-based PDSs do not cause cytotoxicity, nitro-oxidative stress, and inflammation as caused by hypertonic glucose-based PDSs. Since xylitol and carnitine are also known to favorably affect glucose homeostasis, these findings suggest that our PDSs may represent a desirable hypertonic solution even for diabetic patients in PD

    Rationale and design of PURE, a randomized controlled trial to evaluate Peritoneal Ultrafiltration with PolyCore™ in Refractory Congestive Heart Failure

    Get PDF
    Introduction: Peritoneal Ultrafiltration (PUF) has been proposed as an additional therapeutic option for Refractory Congestive Heart Failure (RCHF) patients. Despite promising observational studies and/or case report results, limited clinical trials data exist, and so far, PUF solutions remain only indicated for chronic kidney diseases (CKD). In this article, we describe a multicenter, randomized, controlled, unblinded, adaptive design clinical trial, about to start, investigating the effects of PolyCore™, an innovative PUF solution, in the treatment of RCHF patients. Methods: The Peritoneal Ultrafiltration in Cardiorenal Syndrome (PURE) study is a Phase II, multicenter, randomized, controlled, unblinded, adaptive design clinical trial that aims to evaluate the safety and efficacy of PUF, using PolyCore™ as the investigational solution, in the treatment of RCHF patients who present with prominent right ventricular failure due to afterload mismatch, functional tricuspid regurgitation and enlarged cava vein consequent to intravascular fluid overload. Approximately 84 patients will be randomized 1:1 either to continue with their prescribed guidelines-directed medical therapy or to add the PUF treatment on top of it. The primary objective is to evaluate if PUF treatment has an impact on the composite endpoint of the patient’s mortality or worsening of the patient’s condition such as hospitalization for cardiovascular causes, increasing the initial daily dose of loop diuretic or worsening of renal function. Statistical analysis for the primary endpoint will be standard survival analysis to estimate the failure rate at month 7 for each group via Kaplan-Meier curves. Sensitivity analysis and various secondary analyses, including a multiple events analysis, will be conducted to evaluate the robustness of the primary endpoint results. Safety will be evaluated for up to 12 months. Conclusion: The PURE Study was designed to evaluate the safety and efficacy of peritoneal ultrafiltration with PolyCore™ on top of guidelines-directed medical therapy in patients with RCHF, assuming a combined clinical endpoint of mortality or worsening patients’ condition. If successful, the treatment should allow for an improvement of the RCHF symptoms, decreasing hospitalization rate of patients. ClinicalTrials.gov Identifier: NCT0399487
    corecore