268 research outputs found
Light-cone quantization of scalar field on time-dependent backgrounds
We discuss what is light-cone quantization on a curved spacetime also without a null Killing vector. Then we consider as an example the light-cone quantization of a scalar field on a background with a Killing vector and the connection with the second quantization of the particle in the same background. It turns out that the proper way to define the light-cone quantization is to require that the constant light-cone time hypersurface is null or, equivalently, that the particle Hamiltonian is free of square roots. Moreover, in order to quantize the scalar theory it is necessary to use not the original scalar rather a scalar field density, i.e. the Schrödinger wave functional depends on a scalar density and not on the original field. Finally we recover this result as the second quantization of a particle on the same background, where it is necessary to add as input the fact that we are dealing with a scalar density
Propuesta Ágil para Gestionar Proyectos Educativos Informáticos en Educación Superior
El artículo describe la gestión ágil de proyectos educativos informáticos en contextos de educación superior en la Argentina. En particular, esta experiencia se sitúa en relación con el proceso de enseñanza y aprendizaje significativo debido la importancia del desarrollo del software en todas sus dimensiones y aplicaciones. En el método se describen los elementos adaptados de SCRUM, metodología de trabajo ágil iterativa e incremental para la gestión de proyectos, y cómo se incorpora un sistema de matrices de tres categorías. El resultado de esta innovadora integración se plasma en una propuesta ágil que integra prácticas y artefactos de SCRUM con un sistema de matrices categoriales orientadas a presentar: los objetivos correlacionados, la relación de actores e instrumentos de recolección de datos y una matriz que refleja: la Apropiación de aprendizajes para el uso de una metodología ágil, el Reconocimiento de los roles de los integrantes del equipo, la Comunicación eficaz para la interacción de los miembros del equipo. La propuesta se valida considerando la presentación y exposición de los trabajos integradores en una asignatura de la carrera Licenciatura en Sistemas de Información. Finalmente, es menester abordar el proceso de enseñanzaaprendizaje significativo situado en contexto ágiles atendiendo a la complejidad y emergentes continuos en la actual sociedad del conocimiento.
The article describes an agile managing for educational IT projects in higher education. Argentina is the reference context. In particular, the experience is placed in relation to the process of teaching and learning meaning, considering the software development in all its dimensions and applications. The method describes the elements adapted from SCRUM, iterative and incremental agile working methodology for project management, and how a three-category matrix system is incorporated. The result of this innovative integration is embodied in an agile proposal that integrates SCRUM practices and artifacts with a system of categorical matrices oriented to present: the correlated objectives, the relationship of actors and data collection instruments and the last one containing the following items: the appropriation of learning for the use of an agile methodology, the recognition of the roles of the team members, the effective communication for the interaction of the team members. The proposal is validated considering the presentation and exposition of the integrative works in a subject of the Information Systems degree. Finally, it is necessary to approach the process of significant teaching-learning located in an agile context, taking into account the complexity and continuous emergences in the current knowledge society
The Peptide A-3302-B Isolated from a Marine Bacterium Micromonospora sp. Inhibits HSV-2 Infection by Preventing the Viral Egress from Host Cells
A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome
Accuracy Assessment of Numerical Dosimetry for the Evaluation of Human Exposure to Electric Vehicle Inductive Charging Systems
In this article, we discuss numerical aspects related to the accuracy and the computational efficiency of numerical dosimetric simulations, performed in the context of human exposure to static inductive charging systems of electric vehicles. Two alternative numerical methods based on electric vector potential and electric scalar potential formulations, respectively, are here considered for the electric field computation in highly detailed anatomical human models. The results obtained by the numerical implementation of both approaches are discussed in terms of compliance assessment with ICNIRP guidelines limits for human exposure to electromagnetic fields. In particular, different strategies for smoothing localized unphysical outliers are compared, including novel techniques based on statistical considerations. The outlier removal is particularly relevant when comparison with basic restrictions is required to define the safety of electromagnetic fields exposure. The analysis demonstrates that it is not possible to derive general conclusions about the most robust method for dosimetric solutions. Nevertheless, the combined use of both formulations, together with the use of an algorithm for outliers removal based on a statistical approach, allows to determine final results to be compared with reference limits with a significant level of reliability
Nano CaCO3 particles in cement mortars towards developing a circular economy in the cement industry
This paper calls into question the effects of incorporating nano calcium carbonate (CaCO3) particles in cement mortars, as they are interesting additive materials already successfully tested as cement nanofiller. These nanoparticles could potentially be prepared through the carbonation route using CO2 from combustion gases from the cement industry. This could enable a circular-economy approach for carbon capture and its re-use within the cement industry, in a sustainable and synergistic manner. In this study, part of the cement content was substituted with commercial nano CaCO3 particles to investigate their effects on the flexural and compressive strength of the resulting cement mortars, after curing for 7 and 28 days. Decreasing the cement content could lead to a reduction in the carbon footprint of cement, which is responsible for approximately 8% of global carbon dioxide emissions. Preliminary results using synthesized CaCO3 particles as nanofillers showed that, after 7 days of curing, mechanical properties of cement mortars improved. This indicates that hydration reaction was accelerated since CaCO3 acts as seeding for this reaction. By contrast, after 28 days of curing, no major improvement was observed. A higher content of calcium carbonate nanoparticles may have reduced the filler effect of these particles due to aggregation phenomena. In the present work, the effects of commercial nano CaCO3 particles on cement hydration were investigated. Mechanical tests showed promising results both after 7 and 28 days of curing. This could lead to the reduction of the carbon footprint of cement manufacturing and produce increasingly better performing building materials. Thus, the development of a circular economy in the cement industry could be achieved
Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique
In recent years, several studies have shown that the use of solid lipid nanoparticles (SLN) as a colloidal drug delivery system was more advantageous than lipid emulsions, liposomes and polymeric nanoparticles. SLNs have numerous advantages of different nanosystems and rule out many of their drawbacks. Despite the numerous advantages of SLNs, translation from the preclinical formulation to the industrial scale-up is limited. In order to provide a reproducible and reliable method of producing nanoparticles, and thus, obtain an industrial scale-up, several methods of synthesis of nanoparticles by microfluidic have been developed. Microfluidic technique allows a good control and a continuous online synthesis of nanosystems compared to synthesis in bulk, leading to a narrow size distribution, high batch-to-batch reproducibility, as well as to the industrial scale-up feasibility. This work described the optimization process to produce SLNs by microfluidics. The SLNs produced by microfluidics were characterized by complementary optical and morphological techniques and compared with those produced by bulk method. SLNs were loaded with paclitaxel and sorafenib, used as model drugs. The anti-cancer efficiency of the SLNs formulation was estimated with 2D and 3D tumour models of two different cell lines, and the cellular uptake was also studied with fluorescence-assisted measurements
Combined in silico and in vitro approaches identified the antipsychotic drug lurasidone and the antiviral drug elbasvir as SARS-CoV2 and HCoV-OC43 inhibitors
Polyoxometalate exerts broad-spectrum activity against human respiratory viruses hampering viral entry
- …
