79 research outputs found
Global burden of vision impairment due to age-related macular degeneration, 1990–2021, with forecasts to 2050: a systematic analysis for the Global Burden of Disease Study 2021
Age-related macular degeneration (AMD) is a growing public health concern worldwide, as one of the leading causes of vision impairment. We aimed to estimate global, national, and region-specific prevalence and disability-adjusted life-years (DALYs) along with tobacco as a modifiable risk factor to aid public policy addressing AMD.
Methods
Data on AMD were extracted from the Global Burden of Disease, Injuries, and Risk Factor Study 2021 database in 204 countries and territories, 1990–2021. Vision impairment was defined and categorised by severity as follows: moderate to severe vision loss (visual acuity from <6/18 to 3/60) and blindness (visual acuity <3/60 or a visual field <10 degrees around central fixation). The burden of vision impairment attributable to AMD was subsequently estimated. These estimates were further stratified by geographical region, age, year, sex, Healthcare Access and Quality (HAQ) Index, and Socio-demographic Index (SDI) levels. Additionally, the effect of tobacco use, a modifiable risk factor, on the burden of AMD was analysed, and projections of AMD burden were estimated through to 2050. These projections also included scenario modelling to assess the potential effects of tobacco elimination.
Findings
Globally, the number of individuals with vision impairment due to AMD more than doubled, rising from 3·64 million (95% uncertainty inverval [UI] 3·04–4·35) in 1990 to 8·06 million (6·71–9·82) in 2021. Similarly, DALYs increased by 91% over the same period, from 0·30 million (95% UI 0·21–0·42) to 0·58 million (0·40–0·80). By contrast, age-standardised prevalence and DALY rates declined, with prevalence rates decreasing by 5·53% (99·50 per 100 000 of the population [95% UI 83·16–118·04] in 1990 to 94·00 [78·32–114·42] in 2021) and DALY rates dropping by 19·09% (8·38 [5·70–11·53] to 6·78 [4·70–9·32]). These rates showed a consistent decrease in higher SDI quintiles, reflecting the negative correlation between HAQ Index and AMD burden. A general downward trend was observed from 1990 to 2021, with the largest age-standardised reduction occurring in the low-middle SDI quintile. The global contribution of tobacco to age-standardised DALYs decreased by 20%, declining from 12·45% (95% UI 7·73–17·37) in 1990 to 9·96% (6·12–14·06) in 2021. By 2050, the number of individuals affected by AMD is projected to increase from 3·40 million males (95% UI 2·81–4·17) in 2021 to 9·02 million (5·72–14·20) and from 4·66 million females (3·88–5·65) to 12·32 million (8·88–17·08). Eliminating tobacco use could reduce these numbers to 8·17 million males (5·59–11·92) and 11·15 million females (8·58–14·48) in 2050.
Interpretation
While the total prevalence and DALYs due to AMD have steadily increased from 1990 to 2021, age-standardised prevalence and DALY rates have declined, probably reflecting the effect of population ageing and growth. The consistent decrease in age-standardised rates with higher SDI levels highlights the crucial role of health-care resources and public policies in mitigating AMD-related vision impairment. The downward trend observed from 1990 to 2021 might also be partially attributed to the reduced effect of tobacco as a modifiable risk factor, with declines in tobacco use seen globally and across all SDI quintiles. The burden of vision impairment due to AMD is projected to increase to about 21·34 million in 2050. However, effective tobacco regulation has the potential to substantially reduce AMD-related vision impairment, particularly in lower SDI quintiles where health-care resources are limited.Gates FoundationpublishedVersio
The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis
Background
Antimicrobial resistance (AMR) is an urgent global health challenge and a critical threat to modern health care. Quantifying its burden in the WHO Region of the Americas has been elusive—despite the region’s long history of resistance surveillance. This study provides comprehensive estimates of AMR burden in the Americas to assess this growing health threat.
Methods
We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with AMR for 23 bacterial pathogens and 88 pathogen–drug combinations for countries in the WHO Region of the Americas in 2019. We obtained data from mortality registries, surveillance systems, hospital systems, systematic literature reviews, and other sources, and applied predictive statistical modelling to produce estimates of AMR burden for all countries in the Americas. Five broad components were the backbone of our approach: the number of deaths where infection had a role, the proportion of infectious deaths attributable to a given infectious syndrome, the proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of pathogens resistant to an antibiotic class, and the excess risk of mortality (or duration of an infection) associated with this resistance. We then used these components to estimate the disease burden by applying two counterfactual scenarios: deaths attributable to AMR (compared to an alternative scenario where resistant infections are replaced with susceptible ones), and deaths associated with AMR (compared to an alternative scenario where resistant infections would not occur at all). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity.
Findings
We estimated 569,000 deaths (95% UI 406,000–771,000) associated with bacterial AMR and 141,000 deaths (99,900–196,000) attributable to bacterial AMR among the 35 countries in the WHO Region of the Americas in 2019. Lower respiratory and thorax infections, as a syndrome, were responsible for the largest fatal burden of AMR in the region, with 189,000 deaths (149,000–241,000) associated with resistance, followed by bloodstream infections (169,000 deaths [94,200–278,000]) and peritoneal/intra-abdominal infections (118,000 deaths [78,600–168,000]). The six leading pathogens (by order of number of deaths associated with resistance) were Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Together, these pathogens were responsible for 452,000 deaths (326,000–608,000) associated with AMR. Methicillin-resistant S. aureus predominated as the leading pathogen–drug combination in 34 countries for deaths attributable to AMR, while aminopenicillin-resistant E. coli was the leading pathogen–drug combination in 15 countries for deaths associated with AMR.
Interpretation
Given the burden across different countries, infectious syndromes, and pathogen–drug combinations, AMR represents a substantial health threat in the Americas. Countries with low access to antibiotics and basic health-care services often face the largest age-standardised mortality rates associated with and attributable to AMR in the region, implicating specific policy interventions. Evidence from this study can guide mitigation efforts that are tailored to the needs of each country in the region while informing decisions regarding funding and resource allocation. Multisectoral and joint cooperative efforts among countries will be a key to success in tackling AMR in the Americas.publishedVersio
Global, Regional, and National Burden of Nontraumatic Subarachnoid Hemorrhage
Importance: Nontraumatic subarachnoid hemorrhage (SAH) represents the third most common stroke type with unique etiologies, risk factors, diagnostics, and treatments. Nevertheless, epidemiological studies often cluster SAH with other stroke types leaving its distinct burden estimates obscure. Objective: To estimate the worldwide burden of SAH. Design, setting, and participants: Based on the repeated cross-sectional Global Burden of Disease (GBD) 2021 study, the global burden of SAH in 1990 to 2021 was estimated. Moreover, the SAH burden was compared with other diseases, and its associations with 14 individual risk factors were investigated with available data in the GBD 2021 study. The GBD study included the burden estimates of nontraumatic SAH among all ages in 204 countries and territories between 1990 and 2021. Exposures: SAH and 14 modifiable risk factors. Main outcomes and measures: Absolute numbers and age-standardized rates with 95% uncertainty intervals (UIs) of SAH incidence, prevalence, mortality, and disability-adjusted life-years (DALYs) as well as risk factor-specific population attributable fractions (PAFs). Results: In 2021, the global age-standardized SAH incidence was 8.3 (95% UI, 7.3-9.5), prevalence was 92.2 (95% UI, 84.1-100.6), mortality was 4.2 (95% UI, 3.7-4.8), and DALY rate was 125.2 (95% UI, 110.5-142.6) per 100 000 people. The highest burden estimates were found in Latin America, the Caribbean, Oceania, and high-income Asia Pacific. Although the absolute number of SAH cases increased, especially in regions with a low sociodemographic index, all age-standardized burden rates decreased between 1990 and 2021: the incidence by 28.8% (95% UI, 25.7%-31.6%), prevalence by 16.1% (95% UI, 14.8%-17.7%), mortality by 56.1% (95% UI, 40.7%-64.3%), and DALY rate by 54.6% (95% UI, 42.8%-61.9%). Of 300 diseases, SAH ranked as the 36th most common cause of death and 59th most common cause of DALY in the world. Of all worldwide SAH-related DALYs, 71.6% (95% UI, 63.8%-78.6%) were associated with the 14 modeled risk factors of which high systolic blood pressure (population attributable fraction [PAF] = 51.6%; 95% UI, 38.0%-62.6%) and smoking (PAF = 14.4%; 95% UI, 12.4%-16.5%) had the highest attribution. Conclusions and relevance: Although the global age-standardized burden rates of SAH more than halved over the last 3 decades, SAH remained one of the most common cardiovascular and neurological causes of death and disabilities in the world, with increasing absolute case numbers. These findings suggest evidence for the potential health benefits of proactive public health planning and resource allocation toward the prevention of SAH
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
publishedVersio
Changing life expectancy in European countries 1990–2021: a subanalysis of causes and risk factors from the Global Burden of Disease Study 2021
Background: Decades of steady improvements in life expectancy in Europe slowed down from around 2011, well before the COVID-19 pandemic, for reasons which remain disputed. We aimed to assess how changes in risk factors and cause-specific death rates in different European countries related to changes in life expectancy in those countries before and during the COVID-19 pandemic. Methods: We used data and methods from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to compare changes in life expectancy at birth, causes of death, and population exposure to risk factors in 16 European Economic Area countries (Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, and Sweden) and the four UK nations (England, Northern Ireland, Scotland, and Wales) for three time periods: 1990–2011, 2011–19, and 2019–21. Changes in life expectancy and causes of death were estimated with an established life expectancy cause-specific decomposition method, and compared with summary exposure values of risk factors for the major causes of death influencing life expectancy. Findings: All countries showed mean annual improvements in life expectancy in both 1990–2011 (overall mean 0·23 years [95% uncertainty interval [UI] 0·23 to 0·24]) and 2011–19 (overall mean 0·15 years [0·13 to 0·16]). The rate of improvement was lower in 2011–19 than in 1990–2011 in all countries except for Norway, where the mean annual increase in life expectancy rose from 0·21 years (95% UI 0·20 to 0·22) in 1990–2011 to 0·23 years (0·21 to 0·26) in 2011–19 (difference of 0·03 years). In other countries, the difference in mean annual improvement between these periods ranged from –0·01 years in Iceland (0·19 years [95% UI 0·16 to 0·21] vs 0·18 years [0·09 to 0·26]), to –0·18 years in England (0·25 years [0·24 to 0·25] vs 0·07 years [0·06 to 0·08]). In 2019–21, there was an overall decrease in mean annual life expectancy across all countries (overall mean –0·18 years [95% UI –0·22 to –0·13]), with all countries having an absolute fall in life expectancy except for Ireland, Iceland, Sweden, Norway, and Denmark, which showed marginal improvement in life expectancy, and Belgium, which showed no change in life expectancy. Across countries, the causes of death responsible for the largest improvements in life expectancy from 1990 to 2011 were cardiovascular diseases and neoplasms. Deaths from cardiovascular diseases were the primary driver of reductions in life expectancy improvements during 2011–19, and deaths from respiratory infections and other COVID-19 pandemic-related outcomes were responsible for the decreases in life expectancy during 2019–21. Deaths from cardiovascular diseases and neoplasms in 2019 were attributable to high systolic blood pressure, dietary risks, tobacco smoke, high LDL cholesterol, high BMI, occupational risks, high alcohol use, and other risks including low physical activity. Exposure to these major risk factors differed by country, with trends of increasing exposure to high BMI and decreasing exposure to tobacco smoke observed in all countries during 1990–2021. Interpretation: The countries that best maintained improvements in life expectancy after 2011 (Norway, Iceland, Belgium, Denmark, and Sweden) did so through better maintenance of reductions in mortality from cardiovascular diseases and neoplasms, underpinned by decreased exposures to major risks, possibly mitigated by government policies. The continued improvements in life expectancy in five countries during 2019–21 indicate that these countries were better prepared to withstand the COVID-19 pandemic. By contrast, countries with the greatest slowdown in life expectancy improvements after 2011 went on to have some of the largest decreases in life expectancy in 2019–21. These findings suggest that government policies that improve population health also build resilience to future shocks. Such policies include reducing population exposure to major upstream risks for cardiovascular diseases and neoplasms, such as harmful diets and low physical activity, tackling the commercial determinants of poor health, and ensuring access to affordable health services. Funding: Gates Foundation
Global, regional, and national burden of household air pollution, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Despite a substantial reduction in the use of solid fuels for cooking worldwide, exposure to household air pollution (HAP) remains a leading global risk factor, contributing considerably to the burden of disease. We present a comprehensive analysis of spatial patterns and temporal trends in exposure and attributable disease from 1990 to 2021, featuring substantial methodological updates compared with previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study, including improved exposure estimations accounting for specific fuel types.
Methods: We estimated HAP exposure and trends and attributable burden for cataract, chronic obstructive pulmonary disease, ischaemic heart disease, lower respiratory infections, tracheal cancer, bronchus cancer, lung cancer, stroke, type 2 diabetes, and causes mediated via adverse reproductive outcomes for 204 countries and territories from 1990 to 2021. We first estimated the mean fuel type-specific concentrations (in μg/m3) of fine particulate matter (PM2·5) pollution to which individuals using solid fuels for cooking were exposed, categorised by fuel type, location, year, age, and sex. Using a systematic review of the epidemiological literature and a newly developed meta-regression tool (meta-regression: Bayesian, regularised, trimmed), we derived disease-specific, non-parametric exposure–response curves to estimate relative risk as a function of PM2·5 concentration. We combined our exposure estimates and relative risks to estimate population attributable fractions and attributable burden for each cause by sex, age, location, and year.
Findings: In 2021, 2·67 billion (95% uncertainty interval [UI] 2·63–2·71) people, 33·8% (95% UI 33·2–34·3) of the global population, were exposed to HAP from all sources at a mean concentration of 84·2 μg/m3. Although these figures show a notable reduction in the percentage of the global population exposed in 1990 (56·7%, 56·4–57·1), in absolute terms, there has been only a decline of 0·35 billion (10%) from the 3·02 billion people exposed to HAP in 1990. In 2021, 111 million (95% UI 75·1–164) global disability-adjusted life-years (DALYs) were attributable to HAP, accounting for 3·9% (95% UI 2·6–5·7) of all DALYs. The rate of global, HAP-attributable DALYs in 2021 was 1500·3 (95% UI 1028·4–2195·6) age-standardised DALYs per 100 000 population, a decline of 63·8% since 1990, when HAP-attributable DALYs comprised 4147·7 (3101·4–5104·6) age-standardised DALYs per 100 000 population. HAP-attributable burden remained highest in sub-Saharan Africa and south Asia, with 4044·1 (3103·4–5219·7) and 3213·5 (2165·4–4409·4) age-standardised DALYs per 100 000 population, respectively. The rate of HAP-attributable DALYs was higher for males (1530·5, 1023·4–2263·6) than for females (1318·5, 866·1–1977·2). Approximately one-third of the HAP-attributable burden (518·1, 410·1–641·7) was mediated via short gestation and low birthweight. Decomposition of trends and drivers behind changes in the HAP-attributable burden highlighted that declines in exposures were counteracted by population growth in most regions of the world, especially sub-Saharan Africa. Interpretation: Although the burden attributable to HAP has decreased considerably, HAP remains a substantial risk factor, especially in sub-Saharan Africa and south Asia. Our comprehensive estimates of HAP exposure and attributable burden offer a robust and reliable resource for health policy makers and practitioners to precisely target and tailor health interventions. Given the persistent and substantial impact of HAP in many regions and countries, it is imperative to accelerate efforts to transition under-resourced communities to cleaner household energy sources. Such initiatives are crucial for mitigating health risks and promoting sustainable development, ultimately improving the quality of life and health outcomes for millions of people.
Funding: Bill & Melinda Gates Foundation
Global, regional, and national burden of headache disorders, 1990–2023: a systematic analysis for the Global Burden of Disease Study 2023
Background:
The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2023 estimates health loss from migraine, tension-type headache, and medication-overuse headache. This study presents updated results on headache-attributed burden from 1990 to 2023, along with clinical and public health implications.
Methods:
Data on the prevalence, incidence, or remission of migraine, tension-type headache, and medication-overuse headache were extracted from published population-based studies. We used hierarchical Bayesian meta-regression modelling to estimate global, regional, and country-level prevalence of headache disorders. For the first time in GBD 2023, age-specific and sex-specific estimates of time in symptomatic state were applied by meta-analysing individual participant data from 41 653 individuals from the general populations of 18 countries from all parts of the world. Disability weights were applied to calculate years lived with disability (YLDs). Since medication-overuse headache is a sequela of a mistreated primary headache (due to medication overuse), its burden was reattributed to migraine or tension-type headache, informed by a meta-analysis of three longitudinal studies.
Findings:
In 2023, 2·9 billion individuals (95% uncertainty interval 2·6–3·1) were affected by headache disorders, with a global age-standardised prevalence of 34·6% (31·6–37·5) and a YLD rate of 541·9 (373·4–739·9) per 100 000 population, with 487·5 (323·0–678·8) per 100 000 population attributed to migraine. The prevalence rates of these headache disorders have remained stable over the past three decades. YLD rates due to headache disorders were more than twice as high in females (739·9 [511·2–1011·5] per 100 000) as in males (346·1 [240·4–481·8] per 100 000). Medication-overuse headache contributed 58·9% of the YLD estimates for tension-type headache in males and 56·1% in females, as well as 22·6% of the YLD estimates for migraines in males and 14·1% in females.
Interpretation:
Headache disorders, in particular migraine, continue to be a major global health challenge, emphasising the need for effective management and prevention strategies. Much headache-attributed burden could be averted or eliminated by avoiding overuse of medication (including over-the-counter medication), underscoring the importance of public education
- …
