1,136 research outputs found
Quantum anti-quenching of radiation from laser-driven structured plasma channels
We demonstrate that in the interaction of a high-power laser pulse with a
structured solid-density plasma-channel, clear quantum signatures of stochastic
radiation emission manifest, disclosing a novel avenue to studying the
quantized nature of photon emission. In contrast to earlier findings we observe
that the total radiated energy for very short interaction times, achieved by
studying thin plasma channel targets, is significantly larger in a quantum
radiation model as compared to a calculation including classical radiation
reaction, i.e., we observe quantum anti-quenching. By means of a detailed
analytical analysis and a refined test particle model, corroborated by a full
kinetic plasma simulation, we demonstrate that this counter-intuitive behavior
is due to the constant supply of energy to the setup through the driving laser.
We comment on an experimental realization of the proposed setup, feasible at
upcoming high-intensity laser facilities, since the required thin targets can
be manufactured and the driving laser pulses provided with existing technology.Comment: 6 pages, 3 figure
Birefringence in thermally anisotropic relativistic plasmas and its impact on laser-plasma interactions
One of the paradigm-shifting phenomena triggered in laser-plasma interactions
at relativistic intensities is the so-called relativistic transparency. As the
electrons become heated by the laser to relativistic energies, the plasma
becomes transparent to the laser light even though the plasma density is
sufficiently high to reflect the laser pulse in the non-relativistic case. This
paper highlights the impact that relativistic transparency can have on
laser-matter interactions by focusing on a collective phenomenon that is
associated with the onset of relativistic transparency: plasma birefringence in
thermally anisotropic relativistic plasmas. The optical properties of such a
system become dependent on the polarization of light, and this can serve as the
basis for plasma-based optical devices or novel diagnostic capabilities
Kinetic simulations of X-B and O-X-B mode conversion
We have performed fully-kinetic simulations of X-B and O-X-B mode conversion
in one and two dimensional setups using the PIC code EPOCH. We have recovered
the linear dispersion relation for electron Bernstein waves by employing
relatively low amplitude incoming waves. The setups presented here can be used
to study non-linear regimes of X-B and O-X-B mode conversion.Comment: 4 pages, 3 figure
Strong energy enhancement in a laser-driven plasma-based accelerator through stochastic friction
Conventionally, friction is understood as an efficient dissipation mechanism
depleting a physical system of energy as an unavoidable feature of any
realistic device involving moving parts, e.g., in mechanical brakes. In this
work, we demonstrate that this intuitive picture loses validity in nonlinear
quantum electrodynamics, exemplified in a scenario where spatially random
friction counter-intuitively results in a highly directional energy flow. This
peculiar behavior is caused by radiation friction, i.e., the energy loss of an
accelerated charge due to the emission of radiation. We demonstrate
analytically and numerically how radiation friction can enhance the performance
of a specific class of laser-driven particle accelerators. We find the
unexpected directional energy boost to be due to the particles' energy being
reduced through friction whence the driving laser can accelerate them more
efficiently. In a quantitative case we find the energy of the laser-accelerated
particles to be enhanced by orders of magnitude.Comment: 14 pages, 3 figure
The Unexpected Role of Evolving Longitudinal Electric Fields in Generating Energetic Electrons in Relativistically Transparent Plasmas
Superponderomotive-energy electrons are observed experimentally from the
interaction of an intense laser pulse with a relativistically transparent
target. For a relativistically transparent target, kinetic modeling shows that
the generation of energetic electrons is dominated by energy transfer within
the main, classically overdense, plasma volume. The laser pulse produces a
narrowing, funnel-like channel inside the plasma volume that generates a field
structure responsible for the electron heating. The field structure combines a
slowly evolving azimuthal magnetic field, generated by a strong laser-driven
longitudinal electron current, and, unexpectedly, a strong propagating
longitudinal electric field, generated by reflections off the walls of the
funnel-like channel. The magnetic field assists electron heating by the
transverse electric field of the laser pulse through deflections, whereas the
longitudinal electric field directly accelerates the electrons in the forward
direction. The longitudinal electric field produced by reflections is 30 times
stronger than that in the incoming laser beam and the resulting direct laser
acceleration contributes roughly one third of the energy transferred by the
transverse electric field of the laser pulse to electrons of the
super-ponderomotive tail
- …
