9,657 research outputs found
Reaction cross sections for proton scattering from stable and unstable nuclei based on a microscopic approach
Microscopic optical model potential results for reaction cross sections of
proton elastic scattering are presented. The applications cover the 10-1000 MeV
energy range and consider both stable and unstable nuclei. The study is based
on in-medium g-matrix full-folding optical model approach with the appropriate
relativistic kinematic corrections needed for the higher energy applications.
The effective interactions are based on realistic NN potentials supplemented
with a separable non-Hermitian term to allow optimum agreement with current NN
phase-shift analyzes, particularly the inelasticities above pion production
threshold. The target ground-state densities are obtained from
Hartree-Fock-Bogoliubov calculations based on the finite range, density
dependent Gogny force. The evaluated reaction cross sections for proton
scattering are compared with measurements and their systematics is analyzed. A
simple function of the total cross sections in terms of the atomic mass number
is observed at high energies. At low energies, however, discrepancies with the
available data are observed, being more pronounced in the lighter systems.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
Market Power in Mixed Hydro-Thermal Electric Systems
This paper shows that, unlike what has been found in other papers, a hydro reservoir is an effective tool to exercise market power. Its appealing as a tool is enhanced by the fact that there is no need to constrain total hydro production - a practice too easy to detect -; it suffices to distort the intertemporal allocation of hydro production over time. A hydro-producer may increase his profits by exploiting differences in price elasticity of demand across periods, allocating too little supply to less elastic periods and too much to more elastic periods. Differences in price elasticity across periods may result from the combination of a fluctuating market demand and capacity or transmission constraints that bind intermitently. This hydro scheduling decision is only available to hydro producers as thermal generators are not able to "store electric power" and decide when to sell it. It is also shown that total hydro production is not a sufficient indicator of market power being exercised as hydro producers may exercise market power even when all the water available in the\reservoir is used. The real indicator of market power being exercised is the hydro scheduling strategy usedUtilities; Market Power; Scheduling of Hydro-Reservoirs.
Sensitivity of nucleon-nucleus scattering to the off-shell behavior of on-shell equivalent NN potentials
The sensitivity of nucleon-nucleus elastic scattering to the off-shell
behavior of realistic nucleon-nucleon interactions is investigated when
on-shell equivalent nucleon-nucleon potentials are used. The study is based on
applications of the full-folding optical model potential for an explicit
treatment of the off-shell behavior of the nucleon-nucleon effective
interaction. Applications were made at beam energies between 40 and 500 MeV for
proton scattering from 40Ca and 208Pb. We use the momentum-dependent Paris
potential and its local on-shell equivalent as obtained with the
Gelfand-Levitan and Marchenko inversion formalism for the two nucleon
Schroedinger equation. Full-folding calculations for nucleon-nucleus scattering
show small fluctuations in the corresponding observables. This implies that
off-shell features of the NN interaction cannot be unambiguously identified
with these processes. Inversion potentials were also constructed directly from
NN phase-shift data (SM94) in the 0-1.3 GeV energy range. Their use in
proton-nucleus scattering above 200 MeV provide a superior description of the
observables relative to those obtained from current realistic NN potentials.
Limitations and scope of our findings are presented and discussed.Comment: 17 pages tightened REVTeX, 8 .ps figures, submitted to Phys. Rev.
Non-Gaussian Geostatistical Modeling using (skew) t Processes
We propose a new model for regression and dependence analysis when addressing
spatial data with possibly heavy tails and an asymmetric marginal distribution.
We first propose a stationary process with marginals obtained through scale
mixing of a Gaussian process with an inverse square root process with Gamma
marginals. We then generalize this construction by considering a skew-Gaussian
process, thus obtaining a process with skew-t marginal distributions. For the
proposed (skew) process we study the second-order and geometrical
properties and in the case, we provide analytic expressions for the
bivariate distribution. In an extensive simulation study, we investigate the
use of the weighted pairwise likelihood as a method of estimation for the
process. Moreover we compare the performance of the optimal linear predictor of
the process versus the optimal Gaussian predictor. Finally, the
effectiveness of our methodology is illustrated by analyzing a georeferenced
dataset on maximum temperatures in Australi
Variable stars in the globular cluster NGC 7492. New discoveries and physical parameters determination
We have performed a photometric V, R, I CCD time-series analysis with a
baseline of ~8 years of the outer-halo globular cluster NGC 7492 with the aim
of searching for new variables and using these (and the previously known
variables) to determine the physical parameters of interest for the cluster
(e.g. metallicity, absolute magnitude of the horizontal branch, distance,
etc.).
We use difference image analysis (DIA) to extract precise light curves in the
relatively crowded star field, especially towards the densely populated central
region. Several approaches are used for variability detection that recover the
known variables and lead to new discoveries. We determine the physical
parameters of the only RR0 star using light curve Fourier decomposition
analysis.
We find one new long period variable and two SX Phe stars in the blue
straggler region. We also present one candidate SX Phe star which requires
follow-up observations. Assuming that the SX Phe stars are cluster members and
using the period-luminosity relation for these stars, we estimate their
distances as ~25.2+-1.8 and 26.8+-1.8 kpc, and identify their possible modes of
oscillation. We refine the periods of the two RR Lyrae stars in our field of
view. We find that the RR1 star V2 is undergoing a period change and possibly
exhibits the Blazhko effect. Fourier decomposition of the light curve of the
RR0 star V1 allows us to estimate the metallicity [Fe/H]_ZW-1.68+-0.10 or
[Fe/H]_UVES-1.64+-0.13, log-luminosity ~1.76+-0.02, absolute magnitude
~0.38+-0.04 mag, and true distance modulus of ~16.93+-0.04 mag, which is
equivalent to a distance of ~24.3+-0.5 kpc. All of these values are consistent
with previous estimates in the literature.Comment: 12 pages, 13 figures, 6 tables, accepted for publication in A&
Compressibility of the nitridosilicate SrYb[Si4N7] and the oxonitridoaluminosilicates MYb[Si4−xAlxOxN7−x] (x = 2; M = Sr, Ba)
The compressibilities of the nitridosilicate SrYb[Si4N7] and the oxonitridoaluminosilicates MYb[Si4−xAlxOxN7−x] (x = 2; M = Sr, Ba) were investigated by in situ high-pressure X-ray powder diffraction. Pressures up to 42 GPa were generated using the diamond–anvil cell technique. The title compounds are structurally stable to the highest pressure obtained. A fit of a third-order Birch–Murnaghan equation-of-state to the p–V data results in V0 = 302.91 (6) Å3, B0 = 176 (2) GPa and B′ = 4.4 (2) for SrYb[Si4N7]; V0 = 310.4 (1) Å3, B0 = 161 (2) GPa and B′ = 4.6 (2) for SrYb[Si4−xAlxOxN7−x]; and V0 = 317.3 (5) Å3, B0 = 168 (2) GPa and B′ = 4.7 (2) for BaYb[Si4−xAlxOxN7−x]. While the linear compressibilities of the a and c axes of BaYb[Si4−xAlxOxN7−x] are very similar up to 30 GPa, distinct differences were observed for SrYb[Si4N7] and SrYb[Si4−xAlxOxN7−x], with the c axis being the most compressible axis. In all of the investigated compounds the bulk compressibility is dominated by the compression behaviour of the tetrahedral network, while the size of the substituted cation plays a minor role
- …
