157 research outputs found
CXCL12/SDF-1 from perisynaptic Schwann cells promotes regeneration of injured motor axonterminals
The neuromuscular junction has retained through evolution the capacity to regenerate after damage, but little is known on the inter-cellular signals involved in its functional recovery from trauma, autoimmune attacks, or neurotoxins. We report here that CXCL12, also abbreviated as stromal-derived factor-1 (SDF-1), is produced specifically by perisynaptic Schwann cells following motor axon terminal degeneration induced by -latrotoxin. CXCL12 acts via binding to the neuronal CXCR4 receptor. A CXCL12-neutralizing antibody or a specific CXCR4 inhibitor strongly delays recovery from motor neuron degeneration invivo. Recombinant CXCL12 invivo accelerates neurotransmission rescue upon damage and very effectively stimulates the axon growth of spinal cord motor neurons invitro. These findings indicate that the CXCL12-CXCR4 axis plays an important role in the regeneration of the neuromuscular junction after motor axon injury. The present results have important implications in the effort to find therapeutics and protocols to improve recovery of function after different forms of motor axon terminal damage
Impact of tourniquet during knee arthroplasty: a bayesian network meta-analysis of peri-operative outcomes.
INTRODUCTION: The role of tourniquet during knee arthroplasty is controversial. The present study compares various tourniquet protocols using a Bayesian network meta-analysis of peri-operative data.
MATERIAL AND METHODS: The present study was conducted in accordance with the PRISMA extension statement for reporting systematic reviews incorporating network meta-analyses of health interventions. The literature search was conducted in September 2020. All clinical trials investigating the role of tourniquet in knee arthroplasty were considered for inclusion. Methodological quality was assessed using Review Manager 5.3. A Bayesian hierarchical random-effects model analysis was used in all comparisons.
RESULTS: Ultimately, pooled data from 68 studies (7413 procedures) were analysed. Significant inconsistency was found in the data relating to total estimated blood lost; no assumption could be made on this outcome. Full-time tourniquet resulted in the shortest surgical duration and lowest intra-operative blood lost, in both cases followed by incision-to-suture. The incision-to-suture protocol achieved the smallest drop in haemoglobin during the first 72 h post-operatively and the lowest rate of blood transfusion, both followed by full-time tourniquet. Hospitalisation was shortest in the absence (no-tourniquet) group, followed by the cementation-to-end group.
CONCLUSION: For knee arthroplasty, longer tourniquet use is associated with the shorter duration of surgery, lower intra-operative blood lost, lower drops in haemoglobin and fewer transfusion units. The shortest average hospitalisation was associated with no tourniquet use
A human MMTV-like betaretrovirus linked to breast cancer has been present in humans at least since the Copper Age
The betaretrovirus Mouse Mammary Tumor Virus (MMTV) is the well characterized etiological agent of mammary tumors in mice. In contrast, the etiology of sporadic human breast cancer (BC) is unknown, but accumulating data indicate a possible viral origin also for these malignancies. The presence of MMTVenv-like sequences (MMTVels) in the human salivary glands and saliva supports the latter as possible route of interhuman dissemination. In the absence of the demonstration of a mouse-man transmission of MMTV, we considered the possibility that a cross-species transmission could have occurred in ancient times. Therefore, we investigated MMTVels in the ancient dental calculus, which originates from saliva and is an excellent material for paleovirology. The calculus was collected from 36 ancient human skulls, excluding any possible mouse contamination. MMTV-like sequences were identified in the calculus of 6 individuals dated from the Copper Age to the 17th century. The MMTV-like sequences were compared with known human endogenous betaretroviruses and with animal exogenous betaretroviruses, confirming their exogenous origin and relation to MMTV. These data reveal that a human exogenous betaretrovirus similar to MMTV has existed at least since 4,500 years ago and indirectly support the hypothesis that it could play a role in human breast cancer
Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload.
We have previously shown that genetic ablation of melusin, a muscle specific beta 1 integrin interacting protein, accelerates left ventricle (LV) dilation and heart failure in response to pressure overload. Here we show that melusin expression was increased during compensated cardiac hypertrophy in mice subjected to 1 week pressure overload, but returned to basal levels in LV that have undergone dilation after 12 weeks of pressure overload. To better understand the role of melusin in cardiac remodeling, we overexpressed melusin in heart of transgenic mice. Echocardiography analysis indicated that melusin over-expression induced a mild cardiac hypertrophy in basal conditions (30% increase in interventricular septum thickness) with no obvious structural and functional alterations. After prolonged pressure overload (12 weeks), melusin overexpressing hearts underwent further hypertrophy retaining concentric LV remodeling and full contractile function, whereas wild-type LV showed pronounced chamber dilation with an impaired contractility. Analysis of signaling pathways indicated that melusin overexpression induced increased basal phosphorylation of GSK3beta and ERK1/2. Moreover, AKT, GSK3beta and ERK1/2 were hyper-phosphorylated on pressure overload in melusin overexpressing compared with wild-type mice. In addition, after 12 weeks of pressure overload LV of melusin overexpressing mice showed a very low level of cardiomyocyte apoptosis and stromal tissue deposition, as well as increased capillary density compared with wild-type. These results demonstrate that melusin overexpression allows prolonged concentric compensatory hypertrophy and protects against the transition toward cardiac dilation and failure in response to long-standing pressure overload
ANKRd44 gene silencing: A putative role in trastuzumab resistance in HER2-like breast cancer
Trastuzumab is an effective therapeutic treatment for Her2-like breast cancer; despite this most of these tumors develop resistance to therapy due to specific gene mutations or alterations in gene expression. Understanding the mechanisms of resistance to Trastuzumab could be a useful tool in order to identify combinations of drugs that elude resistance and allow a better response for the treated patients. Twelve primary biopsies of Her2+/hormone receptor negative (ER-/PgR-) breast cancer patients were selected based on the specific response to neoadjuvant therapy with Trastuzumab and their whole exome was sequenced leading to the identification of 18 informative gene mutations that discriminate patients selectively based on response to treatment. Among these genes, we focused on the study of the ANKRD44 gene to understand its role in the mechanism of resistance to Trastuzumab. The ANKRD44 gene was silenced in Her2-like breast cancer cell line (BT474), obtaining a partially Trastuzumab-resistant breast cancer cell line that constitutively activates the NF-kb protein via the TAK1/AKT pathway. Following this activation an increase in the level of glycolysis in resistant cells is promoted, also confirmed by the up-regulation of the LDHB protein and by an increased TROP2 protein expression, found generally associated with aggressive tumors. These results allow us to consider the ANKRD44 gene as a potential gene involved in Trastuzumab resistance
ANKRd44 gene silencing: a putative role in trastuzumab resistance in HER2-like breast cancer
Trastuzumab is an effective therapeutic treatment for Her2-like breast cancer; despite this most of these tumors develop resistance to therapy due to specific gene mutations or alterations in gene expression. Understanding the mechanisms of resistance to Trastuzumab could be a useful tool in order to identify combinations of drugs that elude resistance and allow a better response for the treated patients. Twelve primary biopsies of Her2+/hormone receptor negative (ER-/PgR-) breast cancer patients were selected based on the specific response to neoadjuvant therapy with Trastuzumab and their whole exome was sequenced leading to the identification of 18 informative gene mutations that discriminate patients selectively based on response to treatment. Among these genes, we focused on the study of the ANKRD44 gene to understand its role in the mechanism of resistance to Trastuzumab. The ANKRD44 gene was silenced in Her2-like breast cancer cell line (BT474), obtaining a partially Trastuzumab-resistant breast cancer cell line that constitutively activates the NF-kb protein via the TAK1/AKT pathway. Following this activation an increase in the level of glycolysis in resistant cells is promoted, also confirmed by the up-regulation of the LDHB protein and by an increased TROP2 protein expression, found generally associated with aggressive tumors. These results allow us to consider the ANKRD44 gene as a potential gene involved in Trastuzumab resistance
Association of Type and Location of BRCA1 and BRCA2 Mutations With Risk of Breast and Ovarian Cancer (vol 313, pg 1347, 2015)
Heli Nevanlinna ja Kristiina Aittomäki ovat CIMBA Consortium -työryhmän jäseniä.IMPORTANCE Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists. OBJECTIVE To identify mutation-specific cancer risks for carriers of BRCA1/2. DESIGN, SETTING, AND PARTICIPANTS Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19 581 carriers of BRCA1 mutations and 11 900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk. EXPOSURES Mutations of BRCA1 or BRCA2. MAIN OUTCOMES AND MEASURES Breast and ovarian cancer risks. RESULTS Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317(12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682(6%) with ovarian cancer, 272(2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% Cl, 1.22-1.74; P = 2 x 10(-6)), c.4328 to c.4945 (BCCR2; RH R = 1.34; 95% Cl, 1.01-1.78; P =.04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% Cl, 1.22-1.55; P = 6 x 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% Cl, 0.56-0.70; P = 9 x 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% Cl, 1.06-2.78; P =.03), c.772 to c.1806 (BCCRI; RHR = 1.63; 95% Cl, 1.10-2.40; P =.01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% Cl, 1.69-3.16; P =.00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% Cl, 0.44-0.60; P = 6 x 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% Cl, 0.41-0.80; P =.001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers. CONCLUSIONS AND RELEVANCE Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.Peer reviewe
BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells
Indole-3-carbinol (I3C) and genistein are naturally occurring chemicals derived from cruciferous vegetables and soy, respectively, with potential cancer prevention activity for hormone-responsive tumours (e.g., breast and prostate cancers). Previously, we showed that I3C induces BRCA1 expression and that both I3C and BRCA1 inhibit oestrogen (E2)-stimulated oestrogen receptor (ER-α) activity in human breast cancer cells. We now report that both I3C and genistein induce the expression of both breast cancer susceptibility genes (BRCA1 and BRCA2) in breast (MCF-7 and T47D) and prostate (DU-145 and LNCaP) cancer cell types, in a time- and dose-dependent fashion. Induction of the BRCA genes occurred at low doses of I3C (20 μM) and genistein (0.5–1.0 μM), suggesting potential relevance to cancer prevention. A combination of I3C and genistein gave greater than expected induction of BRCA expression. Studies using small interfering RNAs (siRNAs) and BRCA expression vectors suggest that the phytochemical induction of BRCA2 is due, in part, to BRCA1. Functional studies suggest that I3C-mediated cytoxicity is, in part, dependent upon BRCA1 and BRCA2. Inhibition of E2-stimulated ER-α activity by I3C and genistein was dependent upon BRCA1; and inhibition of ligand-inducible androgen receptor (AR) activity by I3C and genistein was partially reversed by BRCA1-siRNA. Finally, we provide evidence suggesting that the phytochemical induction of BRCA1 expression is due, in part, to endoplasmic reticulum stress response signalling. These findings suggest that the BRCA genes are molecular targets for some of the activities of I3C and genistein
- …
