2,763 research outputs found
Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity.
The heterogeneous reactions of ambient particulate matter (PM)-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) with NO3/N2O5, OH radicals, and O3 were studied in a laboratory photochemical chamber. Ambient PM2.5 and PM10 samples were collected from Beijing, China, and Riverside, California, and exposed under simulated atmospheric long-range transport conditions for O3 and OH and NO3 radicals. Changes in the masses of 23 PAHs and 20 NPAHs, as well as the direct and indirect-acting mutagenicity of the PM (determined using the Salmonella mutagenicity assay with TA98 strain), were measured prior to and after exposure to NO3/N2O5, OH radicals, and O3. In general, O3 exposure resulted in the highest relative degradation of PM-bound PAHs with more than four rings (benzo[a]pyrene was degraded equally well by O3 and NO3/N2O5). However, NPAHs were most effectively formed during the Beijing PM exposure to NO3/N2O5. In ambient air, 2-nitrofluoranthene (2-NF) is formed from the gas-phase NO3 radical- and OH radical-initiated reactions of fluoranthene, and 2-nitropyrene (2-NP) is formed from the gas-phase OH radical-initiated reaction of pyrene. There was no formation of 2-NF or 2-NP in any of the heterogeneous exposures, suggesting that gas-phase formation of NPAHs did not play an important role during chamber exposures. Exposure of Beijing PM to NO3/N2O5 resulted in an increase in direct-acting mutagenic activity which was associated with the formation of mutagenic NPAHs. No NPAH formation was observed in any of the exposures of the Riverside PM. This was likely due to the accumulation of atmospheric degradation products from gas-phase reactions of volatile species onto the surface of PM collected in Riverside prior to exposure in the chamber, thus decreasing the availability of PAHs for reaction
Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens.
The atmospheric chemistry of the 2- to 4-ring polycyclic aromatic hydrocarbons (PAH), which exist mainly in the gas phase in the atmosphere, is discussed. The dominant loss process for the gas-phase PAH is by reaction with the hydroxyl radical, resulting in calculated lifetimes in the atmosphere of generally less than one day. The hydroxyl (OH) radical-initiated reactions and nitrate (NO3) radical-initiated reactions often lead to the formation of mutagenic nitro-PAH and other nitropolycyclic aromatic compounds, including nitrodibenzopyranones. These atmospheric reactions have a significant effect on ambient mutagenic activity, indicating that health risk assessments of combustion emissions should include atmospheric transformation products
A new look at localic interpolation theorems
This paper presents a new treatment of the localic Katetov-Tong interpolation theorem, based on an analysis of special properties of normal frames, which shows that it does not hold in full generality. Besides giving us the conditions under which the localic Katetov-Tong interpolation theorem holds, this approach leads to a especially transparent and succinct proof of it. It is also shown that this pointfree extension of Katetov-Tong theorem still covers the localic versions of Urysohn's Lemma and Tietze's Extension Theorem.http://www.sciencedirect.com/science/article/B6V1K-4GWBDP0-3/1/c51690ad60d2e54badeac9b463852c5
Band Alignment, Built-In Potential, and the Absence of Conductivity at the LaCrO3/SrTiO3(001) Heterojunction
Core-level and valence-band x-ray photoemission spectra measured for molecular-beam-epitaxy-grown LaCrO3/SrTiO3(001) yield band offsets and potential gradients within the LaCrO3 sufficient to trigger an electronic reconstruction to alleviate the polarity mismatch. Yet, the interface is insulating. Based on first principles calculations, we attribute this unexpected result to interfacial cation mixing combined with charge redistribution within CrO2 layers, enabled by low-lying d states within LaCrO3, which suppresses an electronic reconstruction
Alternative farrowing systems: design criteria for farrowing systems based on the biological needs of sows and piglets
The construction of a suitable farrowing environment is a continuing dilemma: the piglet's needs must be matched with those of the sow and the farmer during the main phases that constitute farrowing: nest building, parturition and lactation. Difficulties exist in resolving the various conflicts of interest between and within these three parties (e. g. sow v. farmer: space needed for nest building v. space needed to maximise the amount of farrowing accommodation, or sow v. sow: ensuring the survival of the current litter v. maintaining condition for future litters). Thus, the challenge is to resolve these conflicts and design a system that maximises sow and piglet welfare while maintaining an economically efficient and sustainable enterprise. In order to successfully design a farrowing and lactation environment, it is necessary to consider the biological needs of both the sow and her litter. The natural behaviour of the sow has been well documented and very little variation exists between reports of peri-parturient behaviour observed in extensively kept domestic sows and their wild counterparts. The failure for domestication to significantly alter these behavioural patterns provides evidence that they are biologically significant and that the commercial farrowing environment should attempt to accommodate this behavioural repertoire. In addition, the behavioural needs of the piglets, as well as the physiological needs of both sows and their offspring should be considered. This article aims to review the considerable body of literature detailing the behavioural repertoire of sows and their offspring during the different phases of farrowing, and the accompanying physiological processes. The focus is on identifying biological needs of the animals involved in order to synthesise the appropriate design criteria for farrowing and lactation systems, which should optimise both welfare and animal production.</p
A tale of two diesels.
Two different samples of diesel exhaust particles (DEP) have been used by toxicologists interested primarily in cancer/genotoxicity or noncancer--such as pulmonary inflammation and asthma exacerbation--health end points. These are, respectively, a standard reference material, SRM 2975, from a heavy-duty diesel engine, and a sample collected by researchers at the Japanese National Institute for Environmental Studies from an automobile diesel engine. In this issue of Environmental Health Perspectives companion papers appear, by David DeMarini and co-workers and by Pramila Singh and co-workers, characterizing these samples and contrasting their Salmonella mutagenicity and pulmonary toxicity in mice. This commentary is a plea from an atmospheric chemist for more cooperation among toxicologists, analytical chemists, atmospheric chemists, and automotive and combustion engineers to provide a comprehensive assessment of health risks to humans exposed to contemporary diesel emissions and for greater quantities and more diverse types of DEP and ambient samples (i.e., SRMs) that can be shared and exhaustively characterized. This needs to be a continuing process as diesel engines, fuels, and exhaust components evolve in response to control regulations
Home Rule Analysis (Municipal and County)
A booklet containing the historical significance, strengths and weaknesses in county Home Rule in Jacksonville
Exploring the Circle of Courage Through Art Therapy: A Literature Review
The Circle of Courage is a framework based on Native principles of childrearing that identifies four major components of healthy human development. When fulfilled, these areas of development provide a strong foundation of resilience to life challenges. However, with youth of today these basic developmental needs are often unmet, leaving them at risk for maladaptive coping strategies, behavioral problems, and other challenges as they transition into adulthood. Although extensive work has been done to adapt the Circle of Courage framework to clinical settings, there is little information on how to help youth engage in a process of self-reflection within this framework to aid in healing areas of development that remain unfulfilled. Art therapy provides an important method for promoting positive feelings of self-worth and competence, which can serve to help heal these unfulfilled developmental areas. The purpose of this thesis is to explore the use of art therapy, as a means for clients to engage in a self-reflective process of their own strengths and risks within the Circle of Courage framework, as well as to promote insight and healing through the use of art
- …
