119 research outputs found
First-order transition in small-world networks
The small-world transition is a first-order transition at zero density of
shortcuts, whereby the normalized shortest-path distance undergoes a
discontinuity in the thermodynamic limit. On finite systems the apparent
transition is shifted by . Equivalently a ``persistence
size'' can be defined in connection with finite-size
effects. Assuming , simple rescaling arguments imply that
. We confirm this result by extensive numerical simulation in one to
four dimensions, and argue that implies that this transition is
first-order.Comment: 4 pages, 3 figures, To appear in Europhysics Letter
Fluctuations in network dynamics
Most complex networks serve as conduits for various dynamical processes,
ranging from mass transfer by chemical reactions in the cell to packet transfer
on the Internet. We collected data on the time dependent activity of five
natural and technological networks, finding that for each the coupling of the
flux fluctuations with the total flux on individual nodes obeys a unique
scaling law. We show that the observed scaling can explain the competition
between the system's internal collective dynamics and changes in the external
environment, allowing us to predict the relevant scaling exponents.Comment: 4 pages, 4 figures. Published versio
Entropy-based analysis of the number partitioning problem
In this paper we apply the multicanonical method of statistical physics on
the number-partitioning problem (NPP). This problem is a basic NP-hard problem
from computer science, and can be formulated as a spin-glass problem. We
compute the spectral degeneracy, which gives us information about the number of
solutions for a given cost and cardinality . We also study an extension
of this problem for partitions. We show that a fundamental difference on
the spectral degeneracy of the generalized () NPP exists, which could
explain why it is so difficult to find good solutions for this case. The
information obtained with the multicanonical method can be very useful on the
construction of new algorithms.Comment: 6 pages, 4 figure
Analysis of a large-scale weighted network of one-to-one human communication
We construct a connected network of 3.9 million nodes from mobile phone call
records, which can be regarded as a proxy for the underlying human
communication network at the societal level. We assign two weights on each edge
to reflect the strength of social interaction, which are the aggregate call
duration and the cumulative number of calls placed between the individuals over
a period of 18 weeks. We present a detailed analysis of this weighted network
by examining its degree, strength, and weight distributions, as well as its
topological assortativity and weighted assortativity, clustering and weighted
clustering, together with correlations between these quantities. We give an
account of motif intensity and coherence distributions and compare them to a
randomized reference system. We also use the concept of link overlap to measure
the number of common neighbors any two adjacent nodes have, which serves as a
useful local measure for identifying the interconnectedness of communities. We
report a positive correlation between the overlap and weight of a link, thus
providing strong quantitative evidence for the weak ties hypothesis, a central
concept in social network analysis. The percolation properties of the network
are found to depend on the type and order of removed links, and they can help
understand how the local structure of the network manifests itself at the
global level. We hope that our results will contribute to modeling weighted
large-scale social networks, and believe that the systematic approach followed
here can be adopted to study other weighted networks.Comment: 25 pages, 17 figures, 2 table
Small world effects in evolution
For asexual organisms point mutations correspond to local displacements in
the genotypic space, while other genotypic rearrangements represent long-range
jumps. We investigate the spreading properties of an initially homogeneous
population in a flat fitness landscape, and the equilibrium properties on a
smooth fitness landscape. We show that a small-world effect is present: even a
small fraction of quenched long-range jumps makes the results indistinguishable
from those obtained by assuming all mutations equiprobable. Moreover, we find
that the equilibrium distribution is a Boltzmann one, in which the fitness
plays the role of an energy, and mutations that of a temperature.Comment: 13 pages and 5 figures. New revised versio
Detrended Fluctuation Analysis of Systolic Blood Pressure Control Loop
We use detrended fluctuation analysis (DFA) to study the dynamics of blood
pressure oscillations and its feedback control in rats by analyzing systolic
pressure time series before and after a surgical procedure that interrupts its
control loop. We found, for each situation, a crossover between two scaling
regions characterized by exponents that reflect the nature of the feedback
control and its range of operation. In addition, we found evidences of
adaptation in the dynamics of blood pressure regulation a few days after
surgical disruption of its main feedback circuit. Based on the paradigm of
antagonistic, bipartite (vagal and sympathetic) action of the central nerve
system, we propose a simple model for pressure homeostasis as the balance
between two nonlinear opposing forces, successfully reproducing the crossover
observed in the DFA of actual pressure signals
Statistical mechanics of complex networks
Complex networks describe a wide range of systems in nature and society, much
quoted examples including the cell, a network of chemicals linked by chemical
reactions, or the Internet, a network of routers and computers connected by
physical links. While traditionally these systems were modeled as random
graphs, it is increasingly recognized that the topology and evolution of real
networks is governed by robust organizing principles. Here we review the recent
advances in the field of complex networks, focusing on the statistical
mechanics of network topology and dynamics. After reviewing the empirical data
that motivated the recent interest in networks, we discuss the main models and
analytical tools, covering random graphs, small-world and scale-free networks,
as well as the interplay between topology and the network's robustness against
failures and attacks.Comment: 54 pages, submitted to Reviews of Modern Physic
Regional Differences in South American Monsoon Precipitation Inferred from the Growth and Isotopic Composition of Tropical Trees
The authors present results on the relationship between tree-ring proxies and regional precipitation for several sites in tropical South America. The responsiveness of oxygen isotopes (δ18O) and seasonal growth as precipitation proxies was first validated by high-resolution sampling of a Tachigali myrmecophila from Manaus, Brazil (3.1°S, 60.0°W). Monthly growth of Tachigali spp. was significantly correlated with monthly precipitation. Intra-annual measurements of cellulose δ18O in Tachigali spp. were also significantly correlated with monthly precipitation at a lag of approximately one month. The annual ring widths of two tropical tree taxa, Cedrela odorata growing in the Amazon (12.6°S, 69.2°W) and Polylepis tarapacana growing in the Altiplano (22.0°S, 66.0°W), were validated using bomb-derived radiocarbon 14C. Estimated dates were within two to three years of bomb-inferred 14C dates, indicating that these species exhibit annual rings but uncertainties in our chronologies remain. A multiproxy record spanning 180 years from Cedrela spp. showed a significant negative relationship between cellulose δ18O and January precipitation. A 150-yr record obtained from Polylepis spp. also showed a significant negative relationship between δ18O and March precipitation, whereas annual ring width showed a significant positive correlation with December precipitation. These proxies were combined in a multivariate framework to reconstruct past precipitation, revealing a significant increase in monsoon precipitation at the Amazon site since 1890 and a significant decrease in monsoon precipitation at the Altiplano since 1880. Proxy time series also showed spatial and temporal coherence with precipitation variability due to El Niño forcing, suggesting that oxygen isotopes and ring widths in tropical trees may be important diagnostics for identifying regional differences in the response of the tropical hydrologic cycle to anthropogenic warming
- …
