132 research outputs found
Medium dependence of multiplicity distributions in MLLA
We study the modification of the multiplicity distributions in MLLA due to
the presence of a QCD medium. The medium is introduced though a multiplicative
constant () in the soft infrared parts of the kernels of QCD evolution
equations. Using the asymptotic ansatz for quark and gluons mean multiplicities
and respectively, we study two
cases: fixed as previously considered in the literature, and fixed
. We find opposite behaviors of the dispersion of the multiplicity
distributions with increasing in both cases. For fixed the
dispersion decreases, while for fixed it increases.Comment: LaTeX, 9 pages, 4 eps figures; proceedings of the 3rd International
Conference on Hard and Electromagnetic Probes in High-Energy Nuclear
Collisions - Hard Probes 2008 (Illa de A Toxa, Spain, June 8th-14th 2008
Obtención de un polímero de tipo Elastina modificado con secuencias Bioactivas y Biodegradables, para su aplicación en ingeniería
La matriz extracelular es uno de los principales elementos reguladores de la actividad celular. Los diferentes módulos de las macromoléculas que la componen son capaces de desencadenar señales que activan diferentes rutas intracelulares que organizan las funciones vitales de las células. La ingeniería de tejidos se dedica a desarrollar sistemas capaces de imitar, temporalmente, el comportamiento de la matriz extracelular con objeto de promover la regeneración o el reemplazo de tejidos y órganos dañados, actuando como un soporte atractivo para las células que deben adherirse y crecer sobre ella, hasta reemplazarla por tejido sano. En este trabajo se describe el proceso de diseño y producción de un polímero de tipo elastina que se ha funcionalizado con secuencias bioactivas que añaden actividades específicas al andamio o soporte celular que constituye la elastina. Así,algunos dominios elastoméricos se modificaron con el aminoácido lisina para poder entrecruzar las moléculas de polímero y conseguir matrices. También se incluyó la secuencia REDV, presente el dominio CS5 de la fibronectina humana, como motivo de adhesión celular. Por último, el polímero se funcionalizó con secuencias diana de enzimas proteolíticas para mejorar su bioprocesabilidad.Extracellular matrix (ECM) is a major component for the regulation of cell activity. The different modules of the proteins which constitute the extracellular matrix macromolecules represent for the cells which enter in contact with them, new signals capable of activating several intracellular signaling pathways, resulting in the modulation of numerous cell functions. Tissue engineering tries to develop new materials based on these components as scaffolds for cells to promote their adhesion and growth. In this work, genetic engineering techniques were used to design and biosynthesize an extracellular matrix analogue based in the elastin component. The structural base of our scaffold is an elastin –derived sequence which confers an adequate mechanical behavior. In addition, several domains were included, for adding new bioactivities to this elastin-like polymer (ELP). Some of these elastic domains were modified to contain lysine for cross linking purposes. The polymer also contained periodically spaced fibronectin CS5 domain enclosing the well known cell attachment sequence REDV. Finally, the polymer had target sequences for proteolitic action.Peer ReviewedAward-winnin
Segmenting Critical Factors for Enhancing the use of IT in Humanitarian Supply Chain Management
AbstractThis study intends to explore and segment the critical factors (CFs) to enhance the use of Information Technology (IT) in Humanitarian Supply Chain (HSC), particularly in the Indian context. In this study, ten influencing factors has been identified through an extensive literature review and expert opinion. A structural model and cause–effect relationship diagram was developed using decision-making trial and evaluation laboratory (DEMATEL) method for the identification of CFs. The present study adopt a comprehensive and rigorous procedure to identify six CFs namely, top management support, Government support, feedback mechanism to facilitate learning from prior experiences, transparent and accountable supply chain, strategic planning, and mutual learning with other commercial organizations (COs). The developed framework provides a simple, effective and efficient way to enhance the utilization of IT in HSC and in large to improve the competencies and performance of HSC
Application of direct bioautography and SPME-GC-MS for the study of antibacterial chamomile ingredients
The isolation and characterization of antibacterial chamomile components were performed by the use of direct bioautography and solid phase microextraction (SPME)-GC-MS. Four ingredients, active against Vibrio fischeri, were identified as the polyacetylene geometric isomers cis- and trans-spiroethers, the coumarin related herniarin, and the sesquiterpene alcohol (-)-alpha-bisabolol
Caracterización morfológica de una muestra local de bixa orellana l., en Tabasco, Mexico
Different accessions of achiote (Bixa orellana L.) were characterized through 17 quantitative characters of the plant, leaf, flower and fruit, five qualitative ones of plant morphology, such as type of capsule, color of the leaf sheaf, type of leaves, flower color, type of fruit and seed color. The results showed 16 different accessions from the 40 evaluated. Fruits were found with heart, lancet and oblong shape, with and without trichomes, and green, red, brown and yellow colors. The variables that showed significant differences were capsule diameter, seed width, moist weight, and seed sack. The variables with higher correlation were moist weight and dry weight of the seed. Two principal components explained 43.25 % of the total variability of the variables evaluated
Reliability of low-cost near-infrared spectroscopy in the determination of muscular oxygen saturation and hemoglobin concentration during rest, isometric and dynamic strength activity
Indexación ScopusBackground: The objective of this study was to establish the reliability of the Humon Hex near-infrared reflectance spectroscopy (NIRS) in determining muscle oxygen saturation (SmO2) and hemoglobin concentration (Hgb) at rest and during isometric and dynamic strength exercises using a functional electromechanical dynamometer (FEMD). Methods: The SmO2 and Hgb values of sixteen healthy adults (mean ± standard deviation (SD): Age = 36.1 ± 6.4 years) were recorded at rest and during isometry (8 s), dynamic strength I (initial load of 40% of the average isometric load, with 2 kg increments until muscle failure) and dynamic strength II (same as I, but with an initial load of 40% of the maximum isometric load) activity. To evaluate the reliability in the determination of SmO2 and Hgb of this device, intraclass correlation coefficient (ICC), standard error of measurement (SEM) and coefficient of variation (CV) were obtained. Results: The main results obtained are SmO2 at rest (CV = 5.76%, SEM = 3.81, ICC = 0.90), isometric strength (CV = 3.03%, SEM = 2.08, ICC = 0.92), dynamic strength I (CV = 10.6, SEM = 7.17, ICC = 0.22) and dynamic strength II (CV = 9.69, SEM = 6.75, ICC = 0.32); Hgb at rest (CV = 1.97%, SEM = 0.24, ICC = 0.65), isometric strength (CV = 0.98%, SEM = 0.12, ICC = 0.96), dynamic strength I (CV = 3.25, SEM = 0.40, ICC = 0.54) and dynamic strength II (CV = 2.74, SEM = 0.34, ICC = 0.65). Conclusions: The study shows that Humon Hex is a reliable device to obtain SmO2 and Hgb data in healthy adult subjects at rest and during isometric strength, providing precision for measurements made with this device. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.https://www.mdpi.com/1660-4601/17/23/882
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
Burden of 375 diseases and injuries, risk-attributable burden of 88 risk factors, and healthy life expectancy in 204 countries and territories, including 660 subnational locations, 1990–2023: a systematic analysis for the Global Burden of Disease Study 2023
BACKGROUND: For more than three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has provided a framework to quantify health loss due to diseases, injuries, and associated risk factors. This paper presents GBD 2023 findings on disease and injury burden and risk-attributable health loss, offering a global audit of the state of world health to inform public health priorities. This work captures the evolving landscape of health metrics across age groups, sexes, and locations, while reflecting on the remaining post-COVID-19 challenges to achieving our collective global health ambitions. METHODS: The GBD 2023 combined analysis estimated years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 375 diseases and injuries, and risk-attributable burden associated with 88 modifiable risk factors. Of the more than 310 000 total data sources used for all GBD 2023 (about 30% of which were new to this estimation round), more than 120 000 sources were used for estimation of disease and injury burden and 59 000 for risk factor estimation, and included vital registration systems, surveys, disease registries, and published scientific literature. Data were analysed using previously established modelling approaches, such as disease modelling meta-regression version 2.1 (DisMod-MR 2.1) and comparative risk assessment methods. Diseases and injuries were categorised into four levels on the basis of the established GBD cause hierarchy, as were risk factors using the GBD risk hierarchy. Estimates stratified by age, sex, location, and year from 1990 to 2023 were focused on disease-specific time trends over the 2010-23 period and presented as counts (to three significant figures) and age-standardised rates per 100 000 person-years (to one decimal place). For each measure, 95% uncertainty intervals [UIs] were calculated with the 2·5th and 97·5th percentile ordered values from a 250-draw distribution. FINDINGS: Total numbers of global DALYs grew 6·1% (95% UI 4·0-8·1), from 2·64 billion (2·46-2·86) in 2010 to 2·80 billion (2·57-3·08) in 2023, but age-standardised DALY rates, which account for population growth and ageing, decreased by 12·6% (11·0-14·1), revealing large long-term health improvements. Non-communicable diseases (NCDs) contributed 1·45 billion (1·31-1·61) global DALYs in 2010, increasing to 1·80 billion (1·63-2·03) in 2023, alongside a concurrent 4·1% (1·9-6·3) reduction in age-standardised rates. Based on DALY counts, the leading level 3 NCDs in 2023 were ischaemic heart disease (193 million [176-209] DALYs), stroke (157 million [141-172]), and diabetes (90·2 million [75·2-107]), with the largest increases in age-standardised rates since 2010 occurring for anxiety disorders (62·8% [34·0-107·5]), depressive disorders (26·3% [11·6-42·9]), and diabetes (14·9% [7·5-25·6]). Remarkable health gains were made for communicable, maternal, neonatal, and nutritional (CMNN) diseases, with DALYs falling from 874 million (837-917) in 2010 to 681 million (642-736) in 2023, and a 25·8% (22·6-28·7) reduction in age-standardised DALY rates. During the COVID-19 pandemic, DALYs due to CMNN diseases rose but returned to pre-pandemic levels by 2023. From 2010 to 2023, decreases in age-standardised rates for CMNN diseases were led by rate decreases of 49·1% (32·7-61·0) for diarrhoeal diseases, 42·9% (38·0-48·0) for HIV/AIDS, and 42·2% (23·6-56·6) for tuberculosis. Neonatal disorders and lower respiratory infections remained the leading level 3 CMNN causes globally in 2023, although both showed notable rate decreases from 2010, declining by 16·5% (10·6-22·0) and 24·8% (7·4-36·7), respectively. Injury-related age-standardised DALY rates decreased by 15·6% (10·7-19·8) over the same period. Differences in burden due to NCDs, CMNN diseases, and injuries persisted across age, sex, time, and location. Based on our risk analysis, nearly 50% (1·27 billion [1·18-1·38]) of the roughly 2·80 billion total global DALYs in 2023 were attributable to the 88 risk factors analysed in GBD. Globally, the five level 3 risk factors contributing the highest proportion of risk-attributable DALYs were high systolic blood pressure (SBP), particulate matter pollution, high fasting plasma glucose (FPG), smoking, and low birthweight and short gestation-with high SBP accounting for 8·4% (6·9-10·0) of total DALYs. Of the three overarching level 1 GBD risk factor categories-behavioural, metabolic, and environmental and occupational-risk-attributable DALYs rose between 2010 and 2023 only for metabolic risks, increasing by 30·7% (24·8-37·3); however, age-standardised DALY rates attributable to metabolic risks decreased by 6·7% (2·0-11·0) over the same period. For all but three of the 25 leading level 3 risk factors, age-standardised rates dropped between 2010 and 2023-eg, declining by 54·4% (38·7-65·3) for unsafe sanitation, 50·5% (33·3-63·1) for unsafe water source, and 45·2% (25·6-72·0) for no access to handwashing facility, and by 44·9% (37·3-53·5) for child growth failure. The three leading level 3 risk factors for which age-standardised attributable DALY rates rose were high BMI (10·5% [0·1 to 20·9]), drug use (8·4% [2·6 to 15·3]), and high FPG (6·2% [-2·7 to 15·6]; non-significant). INTERPRETATION: Our findings underscore the complex and dynamic nature of global health challenges. Since 2010, there have been large decreases in burden due to CMNN diseases and many environmental and behavioural risk factors, juxtaposed with sizeable increases in DALYs attributable to metabolic risk factors and NCDs in growing and ageing populations. This long-observed consequence of the global epidemiological transition was only temporarily interrupted by the COVID-19 pandemic. The substantially decreasing CMNN disease burden, despite the 2008 global financial crisis and pandemic-related disruptions, is one of the greatest collective public health successes known. However, these achievements are at risk of being reversed due to major cuts to development assistance for health globally, the effects of which will hit low-income countries with high burden the hardest. Without sustained investment in evidence-based interventions and policies, progress could stall or reverse, leading to widespread human costs and geopolitical instability. Moreover, the rising NCD burden necessitates intensified efforts to mitigate exposure to leading risk factors-eg, air pollution, smoking, and metabolic risks, such as high SBP, BMI, and FPG-including policies that promote food security, healthier diets, physical activity, and equitable and expanded access to potential treatments, such as GLP-1 receptor agonists. Decisive, coordinated action is needed to address long-standing yet growing health challenges, including depressive and anxiety disorders. Yet this can be only part of the solution. Our response to the NCD syndemic-the complex interaction of multiple health risks, social determinants, and systemic challenges-will define the future landscape of global health. To ensure human wellbeing, economic stability, and social equity, global action to sustain and advance health gains must prioritise reducing disparities by addressing socioeconomic and demographic determinants, ensuring equitable health-care access, tackling malnutrition, strengthening health systems, and improving vaccination coverage. We live in times of great opportunity
- …
