15,548 research outputs found
Controlling the ellipticity of attosecond pulses produced by laser irradiation of overdense plasmas
The interaction of high-intensity laser pulses and solid targets provides a
promising way to create compact, tunable and bright XUV attosecond sources that
can become a unique tool for a variety of applications. However, it is
important to control the polarization state of this XUV radiation, and to do so
in the most efficient regime of generation. Using the relativistic electronic
spring (RES) model and particle-in-cell (PIC) simulations, we show that the
polarization state of the generated attosecond pulses can be tuned in a wide
range of parameters by adjusting the polarization and angle of incidence of the
laser radiation. In particular, we demonstrate the possibility of producing
circularly polarized attosecond pulses in a wide variety of setups.Comment: 6 pages, 3 figure
Critical point symmetries in boson-fermion systems. The case of shape transition in odd nuclei in a multi-orbit model
We investigate phase transitions in boson-fermion systems. We propose an
analytically solvable model (E(5/12)) to describe odd nuclei at the critical
point in the transition from the spherical to -unstable behaviour. In
the model, a boson core described within the Bohr Hamiltonian interacts with an
unpaired particle assumed to be moving in the three single particle orbitals
j=1/2,3/2,5/2. Energy spectra and electromagnetic transitions at the critical
point compare well with the results obtained within the Interacting Boson
Fermion Model, with a boson-fermion Hamiltonian that describes the same
physical situation.Comment: Phys. Rev. Lett. (in press
A general algebraic model for molecular vibrational spectroscopy
We introduce the Anharmonic Oscillator Symmetry Model to describe vibrational
excitations in molecular systems exhibiting high degree of symmetry. A
systematic procedure is proposed to establish the relation between the
algebraic and configuration space formulations, leading to new interactions in
the algebraic model. This approach incorporates the full power of group
theoretical techniques and provides reliable spectroscopic predictions. We
illustrate the method for the case of -triatomic molecules.Comment: 35 pages TEX, submitted to Annals of Physics (N.Y.
Comment on ``Boson-realization model for the vibrational spectra of tetrahedral molecules''
An algebraic model in terms of a local harmonic boson realization was
recently proposed to study molecular vibrational spectra [Zhong-Qi Ma et al.,
Phys. Rev. A 53, 2173 (1996)]. Because of the local nature of the bosons the
model has to deal with spurious degrees of freedom. An approach to eliminate
the latter from both the Hamiltonian and the basis was suggested. We show that
this procedure does not remove all spurious components from the Hamiltonian and
leads to a restricted set of interactions. We then propose a scheme in which
the physical Hamiltonian can be systematically constructed up to any order
without the need of imposing conditions on its matrix elements. In addition, we
show that this scheme corresponds to the harmonic limit of a symmetry adapted
algebraic approach based on U(2) algebras.Comment: 9 pages Revtex, submitted February 199
A symmetry adapted approach to vibrational excitations in atomic clusters
An algebraic method especially suited to describe strongly anharmonic
vibrational spectra in molecules may be an appropriate framework to study
vibrational spectra of Na clusters, where nearly flat potential energy
surfaces and the appearance of close lying isomers have been reported. As an
illustration we describe the model and apply it to the Be, H, Be
and Na clusters.Comment: 8 pages with 2 tables, invited talk at `Atomic Nuclei & Metallic
Clusters: Finite Many-Fermion Systems', Prague, Czech Republic, September
1-5, 199
- …
