87 research outputs found
Architecture as drawing: representational space architecturally transformed
This thesis project was motivated by the premise that a drawing could take on architectural meaning beyond its initial performance as a re-presentation of an architectural idea. Initially, there existed the goal to create a drawing that was architecture. In the creation of a process wherein the drawing is the research, however, there comes an understanding that a drawing may never be literal architecture; although, the means by which the drawing is created might be architectural, or at the very least, speak to ideals which are fundamental to the creation, to the process, of architecture itself
Drawing as Architecture: Representational Space Architecturally Transformed
This project was motivated by the premise that a drawing could take on architectural meaning beyond its initial performance as a re-presentation of an architectural idea; in other words, the motivation was to create a drawing that was architecture. When the drawing is the research, however, the conclusions found are necessarily different from the earliest goals pursued. There comes an understanding that a drawing may never be literal architecture; although, the means by which the drawing is created might be architectural or, at the very least, speak to ideals which are fundamental to the creation, to the process, of architecture
Overlapping and distinct expression domains of Zic2 and Zic3 during mouse gastrulation
The Zic genes are the vertebrate homologues of the Drosophila Odd-paired gene. Mutations in two of these genes are associated with human congenital genetic disorders. Mutation of human and mouse Zic2 is associated with holoprosencephaly which is caused by a defect of ventral forebrain development and mutation of human and mouse Zic3 is associated with a X-linked heterotaxy syndrome that results from a failure of left-right axis formation. The embryological role of the Zic genes in these disorders is not well understood. Here we show that both of these genes are expressed prior to and throughout gastrulation. The genes show some broad similarities in their expression domains. Both genes however are also uniquely expressed in some tissues and these unique domains correlate with regions that potentially play a role in the aetiology of the respective genetic disorders. During primitive streak stages Zic2 is expressed transiently and uniquely in the node and the head process mesendoderm. The head process is known to be required for the establishment or maintenance of the ventral forebrain, which is the region disrupted in holoprosencephaly. Zic3 is not expressed in the node during primitive streak stages but is expressed in and around the node beginning from the head fold stages of development. This expression of Zic3 correlates well with the first steps in the establishment of the left-right axis. We also examined the expression of the closely related gene, Zic1, and did not detect any transcripts in gastrulation stage embryos
Mutation of the Diamond-Blackfan Anemia Gene Rps7 in Mouse Results in Morphological and Neuroanatomical Phenotypes
The ribosome is an evolutionarily conserved organelle essential for cellular function. Ribosome construction requires assembly of approximately 80 different ribosomal proteins (RPs) and four different species of rRNA. As RPs co-assemble into one multi-subunit complex, mutation of the genes that encode RPs might be expected to give rise to phenocopies, in which the same phenotype is associated with loss-of-function of each individual gene. However, a more complex picture is emerging in which, in addition to a group of shared phenotypes, diverse RP gene-specific phenotypes are observed. Here we report the first two mouse mutations (Rps7(Mtu) and Rps7(Zma)) of ribosomal protein S7 (Rps7), a gene that has been implicated in Diamond-Blackfan anemia. Rps7 disruption results in decreased body size, abnormal skeletal morphology, mid-ventral white spotting, and eye malformations. These phenotypes are reported in other murine RP mutants and, as demonstrated for some other RP mutations, are ameliorated by Trp53 deficiency. Interestingly, Rps7 mutants have additional overt malformations of the developing central nervous system and deficits in working memory, phenotypes that are not reported in murine or human RP gene mutants. Conversely, Rps7 mouse mutants show no anemia or hyperpigmentation, phenotypes associated with mutation of human RPS7 and other murine RPs, respectively. We provide two novel RP mouse models and expand the repertoire of potential phenotypes that should be examined in RP mutants to further explore the concept of RP gene-specific phenotypes.This research was supported in part by the Intramural Research Program of NHGRI, NIH, and the Wellcome Trust and by NHMRC Australia grant 366746.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Dual-specificity MAP kinase phosphatases in health and disease
Source at https://doi.org/10.1016/j.bbamcr.2018.09.002.It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions
CSF1R+ Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype.
Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapies including single-agent immunotherapy and has a dense desmoplastic stroma, and most patients present with advanced metastatic disease. We reveal that macrophages are the dominant leukocyte population both in human PDAC stroma and autochthonous models, with an important functional contribution to the squamous subtype of human PDAC. We targeted macrophages in a genetic PDAC model using AZD7507, a potent selective inhibitor of CSF1R. AZD7507 caused shrinkage of established tumors and increased mouse survival in this difficult-to-treat model. Malignant cell proliferation diminished, with increased cell death and an enhanced T cell immune response. Loss of macrophages rewired other features of the TME, with global changes in gene expression akin to switching PDAC subtypes. These changes were markedly different to those elicited when neutrophils were targeted via CXCR2. These results suggest targeting the myeloid cell axis may be particularly efficacious in PDAC, especially with CSF1R inhibitors
Factors associated with nursing students’ medication competence at the beginning and end of their education
Profound lung remodeling in heart failure, a poorly understood phenomenon with a significant impact (715.6)
Neural plate morphogenesis during mouse neurulation is regulated by antagonism of Bmp signalling
© The Company of Biologists Ltd 2007Dorsolateral bending of the neural plate, an undifferentiated pseudostratified epithelium, is essential for neural tube closure in the mouse spinal region. If dorsolateral bending fails, spina bifida results. In the present study, we investigated the molecular signals that regulate the formation of dorsolateral hinge points (DLHPs). We show that Bmp2 expression correlates with upper spinal neurulation (in which DLHPs are absent); that Bmp2-null embryos exhibit premature, exaggerated DLHPs; and that the local release of Bmp2 inhibits neural fold bending. Therefore, Bmp signalling is necessary and sufficient to inhibit DLHPs. By contrast, the Bmp antagonist noggin is expressed dorsally in neural folds containing DLHPs, noggin-null embryos show markedly reduced dorsolateral bending and local release of noggin stimulates bending. Hence, Bmp antagonism is both necessary and sufficient to induce dorsolateral bending. The local release of Shh suppresses dorsal noggin expression, explaining the absence of DLHPs at high spinal levels, where notochordal expression of Shh is strong. DLHPs `break through' at low spinal levels, where Shh expression is weaker. Zic2 mutant embryos fail to express Bmp antagonists dorsally and lack DLHPs, developing severe spina bifida. Our findings reveal a molecular mechanism based on antagonism of Bmp signalling that underlies the regulation of DLHP formation during mouse spinal neural tube closure
- …
