31,974 research outputs found
Fast, high current, high repetition rate pulse generator for injection lasers
The circuit described is capable of generating high‐current (2–50 A), fast‐rise‐time (10 nsec), square‐wave pulses into a 50‐Ω load. This circuit may be used for driving injection lasers at high repetition rates (up to 1.5 kHz) when connected to coaxial cables
Operating injection lasers by fast square current pulses of variable amplitude
A simple solid state circuit was used to drive GaAs injection lasers by fast (∼100 nsec) square pulses of variable amplitude (0–25 A). The amplitudes of the current pulses and the corresponding emitted light pulses were measured by a dual peak detector circuit. Using these circuits we were able to plot automatically the current vs light curve and determine the threshold current of the laser diodes
Noncooperatively Optimized Tolerance: Decentralized Strategic Optimization in Complex Systems
We introduce noncooperatively optimized tolerance (NOT), a generalization of
highly optimized tolerance (HOT) that involves strategic (game theoretic)
interactions between parties in a complex system. We illustrate our model in
the forest fire (percolation) framework. As the number of players increases,
our model retains features of HOT, such as robustness, high yield combined with
high density, and self-dissimilar landscapes, but also develops features of
self-organized criticality (SOC) when the number of players is large enough.
For example, the forest landscape becomes increasingly homogeneous and
protection from adverse events (lightning strikes) becomes less closely
correlated with the spatial distribution of these events. While HOT is a
special case of our model, the resemblance to SOC is only partial; for example,
the distribution of cascades, while becoming increasingly heavy-tailed as the
number of players increases, also deviates more significantly from a power law
in this regime. Surprisingly, the system retains considerable robustness even
as it becomes fractured, due in part to emergent cooperation between
neighboring players. At the same time, increasing homogeneity promotes
resilience against changes in the lightning distribution, giving rise to
intermediate regimes where the system is robust to a particular distribution of
adverse events, yet not very fragile to changes
Nano-Hertz Gravitational Waves Searches with Interferometric Pulsar Timing Experiments
We estimate the sensitivity to nano-Hertz gravitational waves of pulsar
timing experiments in which two highly-stable millisecond pulsars are tracked
simultaneously with two neighboring radio telescopes that are referenced to the
same time-keeping subsystem (i.e. "the clock"). By taking the difference of the
two time-of-arrival residual data streams we can exactly cancel the clock noise
in the combined data set, thereby enhancing the sensitivity to gravitational
waves. We estimate that, in the band () Hz, this
"interferometric" pulsar timing technique can potentially improve the
sensitivity to gravitational radiation by almost two orders of magnitude over
that of single-telescopes. Interferometric pulsar timing experiments could be
performed with neighboring pairs of antennas of the forthcoming large arraying
projects.Comment: Paper submitted to Phys. Rev. Letters. It is 9 pages long, and
includes 2 figure
Recommended from our members
Gas separation membrane
A method of fabricating a gas separation membrane includes providing a coextruded multilayer film that includes a first polymer layer formed of a first polymer material and a second polymer layer formed of a second polymer material, the first polymer material having a first gas permeability. The coextruded multilayer film is axially oriented such that the second polymer layer has a second gas permeability that is greater than the first gas permeability.Board of Regents, University of Texas Syste
Analytic Harmonic Approach to the N-body problem
We consider an analytic way to make the interacting N-body problem tractable
by using harmonic oscillators in place of the relevant two-body interactions.
The two body terms of the N-body Hamiltonian are approximated by considering
the energy spectrum and radius of the relevant two-body problem which gives
frequency, center position, and zero point energy of the corresponding harmonic
oscillator. Adding external harmonic one-body terms, we proceed to solve the
full quantum mechanical N-body problem analytically for arbitrary masses.
Energy eigenvalues, eigenmodes, and correlation functions like density matrices
can then be computed analytically. As a first application of our formalism, we
consider the N-boson problem in two- and three dimensions where we fit the
two-body interactions to agree with the well-known zero-range model for two
particles in a harmonic trap. Subsequently, condensate fractions, spectra,
radii, and eigenmodes are discussed as function of dimension, boson number N,
and scattering length obtained in the zero-range model. We find that energies,
radii, and condensate fraction increase with scattering length as well as boson
number, while radii decrease with increasing boson number. Our formalism is
completely general and can also be applied to fermions, Bose-Fermi mixtures,
and to more exotic geometries.Comment: 30 pages, 12 figures, updated reference
Constructions for cyclic sieving phenomena
We show how to derive new instances of the cyclic sieving phenomenon from old
ones via elementary representation theory. Examples are given involving objects
such as words, parking functions, finite fields, and graphs.Comment: 18 pages, typos fixed, to appear in SIAM J. Discrete Mat
KIC 2856960: the impossible triple star
KIC 2856960 is a star in the Kepler field which was observed by Kepler for 4
years. It shows the primary and secondary eclipses of a close binary of 0.258d
as well as complex dipping events that last for about 1.5d at a time and recur
on a 204d period. The dips are thought to result when the close binary passes
across the face of a third star. In this paper we present an attempt to model
the dips. Despite the apparent simplicity of the system and strenuous efforts
to find a solution, we find that we cannot match the dips with a triple star
while satisfying Kepler's laws. The problem is that to match the dips the
separation of the close binary has to be larger than possible relative to the
outer orbit given the orbital periods. Quadruple star models can get round this
problem but require the addition of a so-far undetected intermediate period of
order 5 -- 20d that has be a near-perfect integer divisor of the outer 204d
period. Although we have no good explanation for KIC 2856960, using the full
set of Kepler data we are able to update several of its parameters. We also
present a spectrum showing that KIC 2856960 is dominated by light from a K3- or
K4-type star.Comment: 11 pages, 13 figures, accepted for publication in MNRAS August 21,
201
Oxidation processes in magneto-optic and related materials
The surface oxidation processes of thin films of magneto-optic materials, such as the rare-earth transition metal alloys have been studied, starting in ultrahigh vacuum environments, using surface analysis techniques, as a way of modeling the oxidation processes which occur at the base of a defect in an overcoated material, at the instant of exposure to ambient environments. Materials examined have included FeTbCo alloys, as well as those same materials with low percentages of added elements, such a Ta, and their reactivities to both O2 and H2O compared with materials such as thin Fe films coated with ultrathin adlayers of Ti. The surface oxidation pathways for these materials is reviewed, and XPS data presented which indicates the type of oxides formed, and a critical region of Ta concentration which provides optimum protection
The silent burden of anaemia in Tanzania children:a community-based study
Objective was to document the prevalence, age-distribution, and risk factors for anaemia in Tanzanian children less than 5 years old,thereby assisting in the development of effective strategies for controlling anaemia.\ud
\ud
Cluster sampling was used to identify 2417 households at random from four contiguous districts in south-eastern\ud
United Republic of Tanzania in mid-1999. Data on various social and medical parameters were collected and analysed.\ud
\ud
Blood haemoglobin concentrations (Hb) were available for 1979 of the 2131 (93%) children identified and ranged from 1.7 to 18.6 g/dl. Overall, 87% (1722) of children had an Hb <11 g/dl, 39% (775) had an Hb <8 g/dl and 3% (65) had an Hb <5 g/dl. The highest prevalence of anaemia of all three levels was in children aged 6–11 months, of whom 10% (22/226) had an Hb <5 g/dl. However, the prevalence of anaemia was already high in children aged 1–5 months (85% had an Hb <11 g/dl, 42% had an Hb <8 g/dl, and 6% had an Hb <5 g/dl). Anaemia was usually asymptomatic and when symptoms arose they were nonspecific and rarely identified as a serious illness by the care provider. A recent history of treatment with antimalarials and iron\ud
was rare. Compliance with vaccinations delivered through the Expanded Programme of Immunization (EPI) was 82% and was notassociated with risk of anaemia.\ud
\ud
Anaemia is extremely common in south-eastern United Republic of Tanzania, even in very young infants. Further implementation of the Integrated Management of Childhood Illness algorithm should improve the case management of anaemia. However, the asymptomatic nature of most episodes of anaemia highlights the need for preventive strategies. The EPI has good coverage of the target population and it may be an appropriate channel for delivering tools for controlling anaemia and malaria
- …
