165 research outputs found

    Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source

    Full text link
    We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses.Comment: 23 pages, 9 figure

    Origin of Second Harmonic Generation from individual Silicon Nanowires

    Get PDF
    We investigate Second Harmonic Generation from individual silicon nanowires and study the influence of resonant optical modes on the far-field nonlinear emission. We find that the polarization of the Second Harmonic has a size-dependent behavior and explain this phenomenon by a combination of different surface and bulk nonlinear susceptibility contributions. We show that the Second Harmonic Generation has an entirely different origin, depending on whether the incident illumination is polarized parallel or perpendicularly to the nanowire axis. The results open perspectives for further geometry-based studies on the origin of Second Harmonic Generation in nanostructures of high-index centrosymmetric semiconductors.Comment: 7 Pages, 4 Figures + 3 Pages, 6 Figures in Appendi

    Structured ZnO-based contacts deposited by non-reactive rf magnetron sputtering on ultra-thin SiO2/Si through a stencil mask

    Get PDF
    In this paper, we study the localized deposition of ZnO micro and nanostructures deposited by non-reactive rf-magnetron sputtering through a stencil mask on ultra-thin (10 nm) SiO2 layers containing a single plane of silicon nanocrystals (NCs), synthetized by ultra-low energy ion implantation followed by thermal annealing. The localized ZnO-deposited areas are reproducing the exact stencil mask patterns. A resistivity of around 5×10−3 Ω cm is measured on ZnO layer. The as-deposited ZnO material is 97% transparent above the wavelength at 400 nm. ZnO nanostructures can thus be used as transparent electrodes for Si NCs embedded in the gate-oxide of MOS devices

    Engineered Near and Far Field Optical Response of Dielectric Nanostuctures using Focused Cylindrical Vector Beams

    Full text link
    Near- and far-field optical properties of silicon nanostructures under linear polarization (Gaussian beam), and azimuthally or radially focused cylindrical vector beams are investigated by finite-difference time-domain method (FDTD) in Meep open-source software. A python toolkit allowing FDTD simulations in Meep for using those excitation sources is provided. In addition to the preferential excitation of specific electric or magnetic resonance modes as function of the excitation beam polarization, it is shown in the case of spheroids that shape anisotropy affects the resonance wavelength and the dipole orientation of the magnetic or electric dipole mode. For radial or linear polarization, the electric dipole resonance is split by an anapole mode depending on the spheroid symmetry axis with respect to the electric field orientation. Finally, the optical properties in both far-field (scattering pattern) and near-field (electric and magnetic field hot spots) can be tuned by changing the excitation polarization at a fixed wavelength and selecting properly the spheroid shape and dimensions. These numerical simulations can be extended to more complex shapes, or fabrication-friendly nanostructures such as nanocylinders with circular or elliptic sections

    Manipulating and squeezing the photon local density of states with plasmonic nanoparticle networks

    Get PDF
    International audienceIn this Brief Report, we show that when interconnected networks of gold particles are deposited onto a clean planar surface, they strongly modify the photonic local density of states LDOS in the immediate proximity of the self-assembled nanoparticles. They represent unique architectures for the subwavelength patterning of initially flat photonic LDOS. Moreover, we show that their local spectral signatures are well suited for the generation of sites able to enhance molecular fluorescence intensity

    Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces

    No full text
    We demonstrate that polarization conversion in coupled dimer antennas, used in phase discontinuity metasurfaces, can be tuned by careful design. By controlling the gap width, a strong variation of the coupling strength and polarization conversion is found between capacitively and conductively coupled antennas. A theoretical two-oscillator model is proposed, which shows a universal scaling of the degree of polarization conversion with the energy splitting of the symmetric and antisymmetric modes supported by the antennas. Using single antenna spectroscopy, we find good agreement for the scaling of mode splitting and polarization conversion with gap width over the range from capacitive to conductive coupling. Next to linear polarization conversion, we demonstrate single-antenna linear to circular polarization conversion. Our results provide strategies for phase-discontinuity metasurfaces and ultracompact polarization optics

    Directional silicon nano-antennas for quantum emitter control designed by evolutionary optimization

    Full text link
    We optimize silicon nano-antennas to enhance and steer the emission of local quantum sources. We combine global evolutionary optimization (EO) with frequency domain electrodynamical simulations, and compare design strategies based on resonant and non-resonant building blocks. Specifically, we investigate the performance of models with different degrees of freedom but comparable amount of available material. We find that simpler geometric models allow significantly faster convergence of the optimizer, which, expectedly, comes at the cost of a reduced optical performance. We finally analyze the physical mechanisms underlying the directional emission that also comes with an emission rate enhancement, and find a surprising robustness against perturbations of the source emitter location. This makes the structures highly interesting for actual nano-fabrication. We believe that optimized, all-dielectric silicon nano-antennas have high potential for genuine breakthroughs in a multitude of applications in nanophotonics and quantum technologies.Comment: 8 pages, 6 figure
    corecore