1,064 research outputs found

    Describability via ubiquity and eutaxy in Diophantine approximation

    Get PDF
    We present a comprehensive framework for the study of the size and large intersection properties of sets of limsup type that arise naturally in Diophantine approximation and multifractal analysis. This setting encompasses the classical ubiquity techniques, as well as the mass and the large intersection transference principles, thereby leading to a thorough description of the properties in terms of Hausdorff measures and large intersection classes associated with general gauge functions. The sets issued from eutaxic sequences of points and optimal regular systems may naturally be described within this framework. The discussed applications include the classical homogeneous and inhomogeneous approximation, the approximation by algebraic numbers, the approximation by fractional parts, the study of uniform and Poisson random coverings, and the multifractal analysis of L{\'e}vy processes.Comment: 94 pages. Notes based on lectures given during the 2012 Program on Stochastics, Dimension and Dynamics at Morningside Center of Mathematics, the 2013 Arithmetic Geometry Year at Poncelet Laboratory, and the 2014 Spring School in Analysis held at Universite Blaise Pasca

    Random wavelet series based on a tree-indexed Markov chain

    Get PDF
    We study the global and local regularity properties of random wavelet series whose coefficients exhibit correlations given by a tree-indexed Markov chain. We determine the law of the spectrum of singularities of these series, thereby performing their multifractal analysis. We also show that almost every sample path displays an oscillating singularity at almost every point and that the points at which a sample path has at most a given Holder exponent form a set with large intersection.Comment: 25 page

    Multivariate Davenport series

    Full text link
    We consider series of the form an{nx}\sum a_n \{n\cdot x\}, where nZdn\in\Z^{d} and {x}\{x\} is the sawtooth function. They are the natural multivariate extension of Davenport series. Their global (Sobolev) and pointwise regularity are studied and their multifractal properties are derived. Finally, we list some open problems which concern the study of these series.Comment: 43 page

    Detection of an anomalous cluster in a network

    Full text link
    We consider the problem of detecting whether or not, in a given sensor network, there is a cluster of sensors which exhibit an "unusual behavior." Formally, suppose we are given a set of nodes and attach a random variable to each node. We observe a realization of this process and want to decide between the following two hypotheses: under the null, the variables are i.i.d. standard normal; under the alternative, there is a cluster of variables that are i.i.d. normal with positive mean and unit variance, while the rest are i.i.d. standard normal. We also address surveillance settings where each sensor in the network collects information over time. The resulting model is similar, now with a time series attached to each node. We again observe the process over time and want to decide between the null, where all the variables are i.i.d. standard normal, and the alternative, where there is an emerging cluster of i.i.d. normal variables with positive mean and unit variance. The growth models used to represent the emerging cluster are quite general and, in particular, include cellular automata used in modeling epidemics. In both settings, we consider classes of clusters that are quite general, for which we obtain a lower bound on their respective minimax detection rate and show that some form of scan statistic, by far the most popular method in practice, achieves that same rate to within a logarithmic factor. Our results are not limited to the normal location model, but generalize to any one-parameter exponential family when the anomalous clusters are large enough.Comment: Published in at http://dx.doi.org/10.1214/10-AOS839 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore