313 research outputs found
Space life sciences strategic plan
Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program
Contribution of Noradrenaline, Serotonin, and the Basolateral Amygdala to Alcohol Addiction: Implications for Novel Pharmacotherapies for AUDs
Alcohol use disorders (AUDs) constitute one of the 10 leading causes of preventable deaths worldwide. To date, there are only a few Food and Drug Administration (FDA)‐approved medications for AUDs, all of which are only moderately effective. The development of improved and effective strategies for the management of AUDs is greatly needed. This review focuses on understanding the neurobiological basis of alcohol addiction with a special emphasis on the role of serotonin (5‐hydroxytryptamine, 5‐HT) and noradrenaline (NE) in AUDs and sheds light on their complex interplay in the basolateral amygdala (BLA)––a brain region widely implicated in addiction. There is a significant evidence to support the role of the amygdala in stress‐induced negative emotional states resulting from withdrawal from alcohol; in fact, it has been hypothesized that this leads to craving and relapse. Dysregulation of 5‐HT and NE signaling in the BLA have been proposed to alter affective behavior, memory consolidation, and most importantly increase the propensity for addiction to alcohol and other common drugs of abuse. Improving deficits in 5‐HT and NE receptor signaling may provide ideal targets for the treatment of AUDs
Landuse and soil degradation in the southern Maya lowlands, from Pre-Classic to Post-Classic times : The case of La Joyanca (Petén, Guatemala)
International audienceThis work focuses on the impact of Maya agriculture on soil degradation. In site and out site studies in the area of the city of La Joyanca (NW Petén) show that "Maya clays" do not constitute a homogeneous unit, but represent a complex sedimentary record. A high resolution analysis leads us to document changes in rates and practices evolving in time in relation with major socio-political and economic changes. It is possible to highlight extensive agricultural practices between Early Pre-classical to Late Pre-classical times. Intensification occurs in relation with reduction of the fallow duration during Pre-classic to Classic periods. The consequences of these changes on soil erosion are discussed. However, it does not seem that the agronomic potential of the soils was significantly degraded before the end of the Classic period
IODP Expedition 334: An Investigation of the Sedimentary Record, Fluid Flow and State of Stress on Top of the Seismogenic Zone of an Erosive Subduction Margin
The Costa Rica Seismogenesis Project (CRISP) is an
experiment to understand the processes that control nucleation
and seismic rupture of large earthquakes at erosional
subduction zones. Integrated Ocean Drililng Program
(IODP) Expedition 334 by R/V JOIDES Resolution is the first
step toward deep drilling through the aseismic and seismic
plate boundary at the Costa Rica subduction zone offshore
the Osa Peninsula where the Cocos Ridge is subducting
beneath the Caribbean plate. Drilling operations included
logging while drilling (LWD) at two slope sites (Sites U1378
and U1379) and coring at three slope sites (Sites U1378–1380)
and at one site on the Cocos plate (Site U1381). For the first
time the lithology, stratigraphy, and age of the slope and
incoming sediments as well as the petrology of the subducting
Cocos Ridge have been characterized at this margin.
The slope sites recorded a high sediment accumulation rate
of 160–1035m m.y.-1 possibly caused by on-land uplift triggered
by the subduction of the Cocos Ridge. The geochemical
data as well as the in situ temperature data obtained at
the slope sites suggest that fluids are transported from
greater depths. The geochemical profiles at Site U1381 reflect
diffusional communication of a fluid with seawater-like
chemistry and the igneous basement of the Cocos plate
(Solomon et al., 2011; Vannucchi et al., 2012a). The
present-day in situ stress orientation determined by borehole
breakouts at Site U1378 in the middle slope and Site
U1379 in the upper slope shows a marked change in stress
state within ~12 km along the CRISP transect; that may
correspond to a change from compression (middle slope) to
extension (upper slope)
Acute Ethanol Administration Upregulates Synaptic α4-Subunit of Neuronal Nicotinic Acetylcholine Receptors within the Nucleus Accumbens and Amygdala
Alcohol and nicotine are two of the most frequently abused drugs, with their comorbidity well described. Previous data show that chronic exposure to nicotine upregulates high-affinity nicotinic acetylcholine receptors (nAChRs) in several brain areas. Effects of ethanol on specific brain nAChR subtypes within the mesolimbic dopaminergic (DA) pathway may be a key element in the comorbidity of ethanol and nicotine. However, it is unknown how alcohol affects the abundance of these receptor proteins. In the present study, we measured the effect of acute binge ethanol on nAChR α4 subunit levels in the prefrontal cortex (PFC), nucleus accumbens (NAc), ventral tegmental area (VTA), and amygdala (Amg) by western blot analysis using a knock-in mouse line, generated with a normally functioning α4 nAChR subunit tagged with yellow fluorescent protein (YFP). We observed a robust increase in α4-YFP subunit levels in the NAc and the Amg following acute ethanol, with no changes in the PFC and VTA. To further investigate whether this upregulation was mediated by increased local mRNA transcription, we quantified mRNA levels of the Chrna4 gene using qRT-PCR. We found no effect of ethanol on α4 mRNA expression, suggesting that the upregulation of α4 protein rather occurs post-translationally. The quantitative counting of YFP immunoreactive puncta further revealed that α4-YFP protein is upregulated in presynaptic boutons of the dopaminergic axons projecting to the shell and the core regions of the NAc as well as to the basolateral amygdala (BLA), but not to the central or lateral Amg. Together, our results demonstrate that a single exposure to binge ethanol upregulates level of synaptic α4∗ nAChRs in dopaminergic inputs to the NAc and BLA. This upregulation could be linked to the functional dysregulation of dopaminergic signalling observed during the development of alcohol dependence
A new strategy to prevent biofilm and clot formation in medical devices: the use of atmospheric non-thermal plasma assisted deposition of silver-based nanostructured coatings
In industrialized countries, health care associated infections, the fourth leading cause of dis- ease, are a major health issue. At least half of all cases of nosocomial infections are associ- ated with medical devices. Antibacterial coatings arise as an important approach to restrict the nosocomial infection rate without side effects and the development of antibiotic resis- tance. Beside nosocomial infections, clot formation affects cardiovascular medical devices and central venous catheters implants. In order to reduce and prevent such infection, we develop a plasma-assisted process for the deposition of nanostructured functional coatings on flat substrates and mini catheters. Silver nanoparticles (Ag NPs) are synthesized exploit- ing in-flight plasma-droplet reactions and are embedded in an organic coating deposited through hexamethyldisiloxane (HMDSO) plasma assisted polymerization. Coating stability upon liquid immersion and ethylene oxide (EtO) sterilization is assessed through chemical and morphological analysis carried out by means of Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). In the perspective of future clinical appli- cation, an in vitro analysis of anti-biofilm effect has been done. Moreover, we employed a murine model of catheter-associated infection which further highlighted the performance of Ag nanostructured films in counteract biofilm formation. The anti-clot performances coupled by haemo- and cytocompatibility assays have also been performed
Telemedicine and international disaster response: Medical consultation to Armenia and Russia via a telemedicine spacebridge
The Telemedicine Spacebridge, a satellite mediated audio-video-fax link between four U.S. and two Armenian and Russian medical centers, permitted remote American consultants to assist Armenian and Russian physicians in the management of medical problems following the December 1988 earthquake in Armenia and the June 1989 gas explosion near Ufa. During 12 weeks of operations, 247 Armenian and Russian and 175 American medical professionals participated in 34 half-day clinical conferences. 209 patients were discussed, requiring expertise in 20 specialty areas. Telemedicine consultations resulted in altered diagnoses for 54, new diagnostic studies for 70, altered diagnostic processes for 47, and modified treatment plans for 47 of 185 Armenian patients presented. Simultaneous participation of several U.S. medical centers was judged beneficial; quality of data transmission was judged excellent. These results suggest that interactive consultation by remote specialists can provide valuable assistance to onsite physicians and favorably influence clinical decisions in the aftermath of major disasters
Axonal Non-segregation of the Vesicular Glutamate Transporter VGLUT3 Within Serotonergic Projections in the Mouse Forebrain
A subpopulation of raphe 5-HT neurons expresses the vesicular glutamate transporter VGLUT3 with the co-release of glutamate and serotonin proposed to play a pivotal role in encoding reward- and anxiety-related behaviors. Serotonin axons are identifiable by immunolabeling of either serotonin (5-HT) or the plasma membrane 5-HT transporter (SERT), with SERT labeling demonstrated to be only partially overlapping with 5-HT staining. Studies investigating the colocalization or segregation of VGLUT3 within SERT or 5-HT immunolabeled boutons have led to inconsistent results. Therefore, we combined immunohistochemistry, high resolution confocal imaging, and 3D-reconstruction techniques to map and quantify the distribution of VGLUT3 immunoreactive boutons within 5-HT vs. SERT-positive axons in various regions of the mouse forebrain, including the prefrontal cortex, nucleus accumbens core and shell, bed nucleus of the stria terminalis, dorsal striatum, lateral septum, basolateral and central amygdala, and hippocampus. Our results demonstrate that about 90% of 5-HT boutons are colocalized with SERT in almost all the brain regions studied, which therefore reveals that VGLUT3 and SERT do not segregate. However, in the posterior part of the NAC shell, we confirmed the presence of a subtype of 5-HT immunoreactive axons that lack the SERT. Interestingly, about 90% of the 5-HT/VGLUT3 boutons were labeled for the SERT in this region, suggesting that VGLUT3 is preferentially located in SERT immunoreactive 5-HT boutons. This work demonstrates that VGLUT3 and SERT cannot be used as specific markers to classify the different subtypes of 5-HT axons
- …
