21,322 research outputs found

    Pink Lady

    Get PDF
    Prose by Camille Arnett. Winner in the 2018 Manuscripts Prose Contest

    Parody Poems

    Get PDF
    As a class assignment, the author created a series of parody poems inspired by the examples found in Lewis Carroll\u27s Alice in Wonderland

    Through the Looking Glass Chess

    Get PDF
    A variation on the game of chess that reflects some of the motifs, themes, and absurdities of Through the Looking Glass

    Towards Realistic Progenitors of Core-Collapse Supernovae

    Full text link
    Two-dimensional (2D) hydrodynamical simulations of progenitor evolution of a 23 solar mass star, close to core collapse (about 1 hour, in 1D), with simultaneously active C, Ne, O, and Si burning shells, are presented and contrasted to existing 1D models (which are forced to be quasi-static). Pronounced asymmetries, and strong dynamical interactions between shells are seen in 2D. Although instigated by turbulence, the dynamic behavior proceeds to sufficiently large amplitudes that it couples to the nuclear burning. Dramatic growth of low order modes is seen, as well as large deviations from spherical symmetry in the burning shells. The vigorous dynamics is more violent than that seen in earlier burning stages in the 3D simulations of a single cell in the oxygen burning shell, or in 2D simulations not including an active Si shell. Linear perturbative analysis does not capture the chaotic behavior of turbulence (e.g., strange attractors such as that discovered by Lorenz), and therefore badly underestimates the vigor of the instability. The limitations of 1D and 2D models are discussed in detail. The 2D models, although flawed geometrically, represent a more realistic treatment of the relevant dynamics than existing 1D models, and present a dramatically different view of the stages of evolution prior to collapse. Implications for interpretation of SN1987A, abundances in young supernova remnants, pre-collapse outbursts, progenitor structure, neutron star kicks, and fallback are outlined. While 2D simulations provide new qualitative insight, fully 3D simulations are needed for a quantitative understanding of this stage of stellar evolution. The necessary properties of such simulations are delineated.Comment: 26 pages, 1 table, 4 figure

    Turbulent Mixing in Stars: Theoretical Hurdles

    Full text link
    A program is outlined, and first results described, in which fully three-dimensional, time dependent simulations of hydrodynamic turbulence are used as a basis for theoretical investigation of the physics of turbulence in stars. The inadequacy of the treatment of turbulent convection as a diffusive process is discussed. A generalization to rotation and magnetohydrodynamics is indicated, as are connection to simulations of 3D stellar atmospheres.Comment: 5 pages, 1 figure, IAU Symposium 265, 200
    corecore