5,912 research outputs found

    Stellar neutrino energy loss rates due to 24^{24}Mg suitable for O+Ne+Mg core simulations

    Full text link
    Neutrino losses from proto-neutron stars play a pivotal role to decide if these stars would be crushed into black holes or explode as supernovae. Recent observations of subluminous Type II-P supernovae (e.g., 2005cs, 2003gd, 1999br, 1997D) were able to rejuvenate the interest in 8-10 M_{\odot} stars which develop O+Ne+Mg cores. Simulation results of O+Ne+Mg cores show varying results in converting the collapse into an explosion. The neutrino energy loss rates are important input parameters in core collapse simulations. Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has been used for calculation of neutrino energy loss rates due to 24^{24}Mg in stellar matter. The rates are presented on a detailed density-temperature grid suitable for simulation purposes. The calculated neutrino energy loss rates are enhanced up to more than one order of magnitude compared to the shell model calculations and favor a lower entropy for the core of these massive stars.Comment: 20 pages, 4 figures, 2 table

    Contestable adulthood: variability and disparity in markers for negotiating the transition to adulthood

    Get PDF
    Recent research has identified a discreet set of subjective markers that are seen as characterizing the transition to adulthood. The current study challenges this coherence by examining the disparity and variability in young people’s selection of such criteria. Four sentence-completion cues corresponding to four differentcontexts in which adult status might be contested were given to 156 British 16- to 17-year-olds. Their qualitative responses were analyzed to explore patterns whilst capturing some of their richness and diversity. An astonishing amount of variability emerged, both within and between cued contexts.The implications of this variability for how the transition to adulthood is experienced are explored. The argument is made that markers of the transition to adulthood are not merely reflective of the bio–psycho–social development of young people. Rather, adulthood here is seen as an essentially contested concept,located within the discursive interactional environment in which young people participate

    Active Carbon and Oxygen Shell Burning Hydrodynamics

    Full text link
    We have simulated 2.5×103\times10^3 s of the late evolution of a 23M23 \rm M_\odot star with full hydrodynamic behavior. We present the first simulations of a multiple-shell burning epoch, including the concurrent evolution and interaction of an oxygen and carbon burning shell. In addition, we have evolved a 3D model of the oxygen burning shell to sufficiently long times (300 s) to begin to assess the adequacy of the 2D approximation. We summarize striking new results: (1) strong interactions occur between active carbon and oxygen burning shells, (2) hydrodynamic wave motions in nonconvective regions, generated at the convective-radiative boundaries, are energetically important in both 2D and 3D with important consequences for compositional mixing, and (3) a spectrum of mixed p- and g-modes are unambiguously identified with corresponding adiabatic waves in these computational domains. We find that 2D convective motions are exaggerated relative to 3D because of vortex instability in 3D. We discuss the implications for supernova progenitor evolution and symmetry breaking in core collapse.Comment: 5 pages, 4 figures in emulateapj format. Accepted for publication in ApJ Letters. High resolution figure version available at http://spinach.as.arizona.ed

    Nuclear liquid-gas phase transition and supernovae evolution

    Get PDF
    It is shown that the large density fluctuations appearing at the onset of the first order nuclear liquid-gas phase transition can play an important role in the supernovae evolution. Due to these fluctuations, the neutrino gas may be trapped inside a thin layer of matter near the proto-neutron star surface. The resulting increase of pressure may induce strong particle ejection a few hundred milliseconds after the bounce of the collapse, contributing to the revival of the shock wave. The Hartree-Fock+RPA scheme, with a finite-range nucleon-nucleon effective interaction, is employed to estimate the effects of the neutrino trapping due to the strong density fluctuations, and to discuss qualitatively the consequences of the suggested new scenario.Comment: version2 - precise that nuclear liquid-gas phase transition is 1st order and the unique instable mode is isoscala

    Anelastic and Compressible Simulations of Stellar Oxygen Burning

    Get PDF
    In this paper we compare fully compressible (Meakin & Arnett 2006a,b) and anelastic (Kuhlen, Woosley, & Glatzmaier 2003) simulations of stellar oxygen shell burning. It is found that the two models are in agreement in terms of the velocity scale (v_c ~ 1e7 cm/s) and thermodynamic fluctuation amplitudes (e.g., rho'/ ~ 2e-3) in the convective flow. Large fluctuations (~11%) arise in the compressible model, localized to the convective boundaries, and are due to internal waves excited in stable layers. Fluctuations on the several percent level are also present in the compressible model due to composition inhomogeneities from ongoing entrainment events at the convective boundaries. Comparable fluctuations (with amplitudes greater than ~1%) are absent in the anelastic simulation because they are due to physics not included in that model. We derive an analytic estimate for the expected density fluctuation amplitudes at convective boundaries by assuming that the pressure fluctuations due to internal waves at the boundary, p_w', balance the ram pressure of the convective motions, rho*v_c2. The predicted amplitudes agree well with the simulation data. The good agreement between the anelastic and the compressible solution within the convection zone and the agreement between the stable layer dynamics and analytic solutions to the non-radial wave equation indicate that the compressible hydrodynamic techniques used are robust for the simulated stellar convection model, even at the low Mach n umbers found M~0.01

    Algal culture studies for CELSS

    Get PDF
    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities

    Two-Dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning

    Get PDF
    By direct hydrodynamic simulation, using the Piecewise Parabolic Method (PPM) code PROMETHEUS, we study the properties of a convective oxygen burning shell in a SN 1987A progenitor star prior to collapse. The convection is too heterogeneous and dynamic to be well approximated by one-dimensional diffusion-like algorithms which have previously been used for this epoch. Qualitatively new phenomena are seen. The simulations are two-dimensional, with good resolution in radius and angle, and use a large (90-degree) slice centered at the equator. The microphysics and the initial model were carefully treated. Many of the qualitative features of previous multi-dimensional simulations of convection are seen, including large kinetic and acoustic energy fluxes, which are not accounted for by mixing length theory. Small but significant amounts of carbon-12 are mixed non-uniformly into the oxygen burning convection zone, resulting in hot spots of nuclear energy production which are more than an order of magnitude more energetic than the oxygen flame itself. Density perturbations (up to 8%) occur at the `edges' of the convective zone and are the result of gravity waves generated by interaction of penetrating flows into the stable region. Perturbations of temperature and electron fraction at the base of the convective zone are of sufficient magnitude to create angular inhomogeneities in explosive nucleosynthesis products, and need to be included in quantitative estimates of yields. Combined with the plume-like velocity structure arising from convection, the perturbations will contribute to the mixing of nickel-56 throughout supernovae envelopes. Runs of different resolution, and angular extent, were performed to test the robustness of theseComment: For mpeg movies of these simulations, see http://www.astrophysics.arizona.edu/movies.html Submitted to the Astrophysical Journa

    Evidence for a Mid-Atomic-Number Atmosphere in the Neutron Star 1E1207.4-5209

    Get PDF
    Recently Sanwal et al. (2002) reported the first clear detection of absorption features in an isolated neutron star, 1E1207.4-5209. Remarkably their spectral modeling demonstrates that the atmosphere cannot be Hydrogen. They speculated that the neutron star atmosphere is indicative of ionized Helium in an ultra-strong (~1.5x10^{14} G) magnetic field. We have applied our recently developed atomic model (Mori & Hailey 2002) for strongly-magnetized neutron star atmospheres to this problem. We find that this model, along with some simp le atomic physics arguments, severely constrains the possible composition of the atmosphere. In particular we find that the absorption features are naturally associated with He-like Oxygen or Neon in a magnetic field of ~10^{12} G, comparable to the magnetic field derived from the spin parameters of the neutron star. This interpretation is consistent with the relative line strengths and widths and is robust. Our model predicts possible substructure in the spectral features, which has now been reported by XMM-Newton (Mereghetti et al. 2002). However we show the Mereghetti et al. claim that the atmosphere is Iron or some comparable high-Z element at ~ 10^{12} G is easily ruled out by the Chandra and XMM-Newton data.Comment: 5 pages, AASTeX, Revised version. Accepted for publication in ApJ Letter
    corecore