4 research outputs found

    Environmental contributions to disparities in pregnancy outcomes.

    Get PDF
    One of the most persistent disparities in American health status is the pronounced difference in birth outcomes between non-Hispanic black and non-Hispanic white women. Poor pregnancy outcomes have a substantial impact on mortality, morbidity, and health care costs. Increasing evidence indicates that environmental exposures are associated with poor birth outcomes. This paper reviews the latest research on how environmental exposures affect pregnancy outcomes and then discusses how these exposures may be embedded within a context of significant social and host factor stress. The analysis suggests that environmental, social, and host factors are cumulatively stressing non-Hispanic black women and that this cumulative stress may be a cause of the persistent disparities in pregnancy outcomes

    Skinfold prediction equation for collegiate athletes developed using a four-component model

    No full text
    Introduction: Skinfold (SKF) equations exist to predict percent body fat (%BF) in athletes; however, none have been derived from multicomponent model reference measures. Purpose: To develop and cross-validate a %BF prediction equation based on SKF in athletes using a fourcomponent model as the reference measure. Methods: Subjects were 132 collegiate athletes (20.7 2.0 yr; 78 males: 28 black, 50 white; 54 females: 10 black, 44 white). Four-component model estimates of %BF (%BF4C) included measures of total body water from deuterium dilution, bone mineral by dual- energy x-ray absorptiometry (DXA), and body density by densitometry using underwater weighing. SKF measures included subscapular, triceps, chest, midaxillary, suprailiac, abdominal, and thigh sites (7SKF). A prediction equation was developed on 102 athletes using 7SKF, race, and gender as predictor variables. Cross-validation was performed on a representative holdout sample of 30 athletes. Results: The equation cross-validated well (slope and intercept both not different (P 0.05) from the line of identity (LOI); rYY= 0.85, total error (TE) 3.76%BF) and was better than the existing athlete SKF equations (intercept and slope both different from LOI (P 0.01); rYY= 0.76, TE 4.51%BF). Notably, a prediction equation developed using 3SKF sites (abdomen, thigh, and triceps) produced a similar accuracy (intercept and slope both not different from LOI (P 0.05); rYY= 0.85, TE 3.66%BF). Conclusions: The new 7SKF equation improved on SKF equations developed using densitometry. The final equation based on the whole sample was %BF= 10.566 0.12077*(7SKF) – 8.057*(gender) – 2.545*(race). Moreover, a 3SKF equation was comparable in accuracy to the 7SKF equation: %BF= 8.997 0.24658*(3SKF) – 6.343*(gender) – 1.998*(race)
    corecore