46,024 research outputs found
Particle identification with the AMS-02 RICH detector: D/p and anti-D/anti-p separation
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be
installed on the International Space Station (ISS) for at least 3 years, is a
detector designed to measure charged cosmic ray spectra with energies up to the
TeV region and with high energy photon detection capability up to a few hundred
GeV, using state-of-the art particle identification techniques. Among several
detector subsystems, AMS includes a proximity focusing RICH enabling precise
measurements of particle electric charge and velocity. The combination of both
these measurements together with the particle rigidity measured on the silicon
tracker endows a reliable measurement of the particle mass. The main topics of
the AMS-02 physics program include detailed measurements of the nuclear
component of the cosmic-ray spectrum and the search for indirect signatures of
dark matter. Mass separation of singly charged particles, and in particular the
separation of deuterons and antideuterons from massive backgrounds of protons
and antiprotons respectively, is essential in this context. Detailed Monte
Carlo simulations of AMS-02 have been used to evaluate the detector's
performance for mass separation at different energies. The obtained results and
physics prospects are presented.Comment: 5 pages. Contribution to the Sixth International Workshop on New
Worlds in Astroparticle Physics (Faro 2007). Presenter: Rui Pereir
Active vision for dexterous grasping of novel objects
How should a robot direct active vision so as to ensure reliable grasping? We
answer this question for the case of dexterous grasping of unfamiliar objects.
By dexterous grasping we simply mean grasping by any hand with more than two
fingers, such that the robot has some choice about where to place each finger.
Such grasps typically fail in one of two ways, either unmodeled objects in the
scene cause collisions or object reconstruction is insufficient to ensure that
the grasp points provide a stable force closure. These problems can be solved
more easily if active sensing is guided by the anticipated actions. Our
approach has three stages. First, we take a single view and generate candidate
grasps from the resulting partial object reconstruction. Second, we drive the
active vision approach to maximise surface reconstruction quality around the
planned contact points. During this phase, the anticipated grasp is continually
refined. Third, we direct gaze to improve the safety of the planned reach to
grasp trajectory. We show, on a dexterous manipulator with a camera on the
wrist, that our approach (80.4% success rate) outperforms a randomised
algorithm (64.3% success rate).Comment: IROS 2016. Supplementary video: https://youtu.be/uBSOO6tMzw
Fano resonances in plasmonic core-shell particles and the Purcell effect
Despite a long history, light scattering by particles with size comparable
with the light wavelength still unveils surprising optical phenomena, and many
of them are related to the Fano effect. Originally described in the context of
atomic physics, the Fano resonance in light scattering arises from the
interference between a narrow subradiant mode and a spectrally broad radiation
line. Here, we present an overview of Fano resonances in coated spherical
scatterers within the framework of the Lorenz-Mie theory. We briefly introduce
the concept of conventional and unconventional Fano resonances in light
scattering. These resonances are associated with the interference between
electromagnetic modes excited in the particle with different or the same
multipole moment, respectively. In addition, we investigate the modification of
the spontaneous-emission rate of an optical emitter at the presence of a
plasmonic nanoshell. This modification of decay rate due to electromagnetic
environment is referred to as the Purcell effect. We analytically show that the
Purcell factor related to a dipole emitter oriented orthogonal or tangential to
the spherical surface can exhibit Fano or Lorentzian line shapes in the near
field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano
Resonances in Optics and Microwaves: Physics and Application", Springer
Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev,
and A. Miroshnichenk
- …
