14 research outputs found

    Lam\'e polynomials, hyperelliptic reductions and Lam\'e band structure

    Full text link
    The band structure of the Lam\'e equation, viewed as a one-dimensional Schr\"odinger equation with a periodic potential, is studied. At integer values of the degree parameter l, the dispersion relation is reduced to the l=1 dispersion relation, and a previously published l=2 dispersion relation is shown to be partially incorrect. The Hermite-Krichever Ansatz, which expresses Lam\'e equation solutions in terms of l=1 solutions, is the chief tool. It is based on a projection from a genus-l hyperelliptic curve, which parametrizes solutions, to an elliptic curve. A general formula for this covering is derived, and is used to reduce certain hyperelliptic integrals to elliptic ones. Degeneracies between band edges, which can occur if the Lam\'e equation parameters take complex values, are investigated. If the Lam\'e equation is viewed as a differential equation on an elliptic curve, a formula is conjectured for the number of points in elliptic moduli space (elliptic curve parameter space) at which degeneracies occur. Tables of spectral polynomials and Lam\'e polynomials, i.e., band edge solutions, are given. A table in the older literature is corrected.Comment: 38 pages, 1 figure; final revision

    Root asymptotics of spectral polynomials for the Lame operator

    Full text link
    The study of polynomial solutions to the classical Lam\'e equation in its algebraic form, or equivalently, of double-periodic solutions of its Weierstrass form has a long history. Such solutions appear at integer values of the spectral parameter and their respective eigenvalues serve as the ends of bands in the boundary value problem for the corresponding Schr\"odinger equation with finite gap potential given by the Weierstrass \wp-function on the real line. In this paper we establish several natural (and equivalent) formulas in terms of hypergeometric and elliptic type integrals for the density of the appropriately scaled asymptotic distribution of these eigenvalues when the integer-valued spectral parameter tends to infinity. We also show that this density satisfies a Heun differential equation with four singularities.Comment: final version, to appear in Commun. Math. Phys.; 13 pages, 3 figures, LaTeX2

    An algorithm to obtain global solutions of the double confluent Heun equation

    Full text link
    A procedure is proposed to construct solutions of the double confluent Heun equation with a determinate behaviour at the singular points. The connection factors are expressed as quotients of Wronskians of the involved solutions. Asymptotic expansions are used in the computation of those Wronskians. The feasibility of the method is shown in an example, namely, the Schroedinger equation with a quasi-exactly-solvable potential

    Tachyon condensation on brane sphalerons

    Full text link
    We consider a sphaleron solution in field theory that provides a toy model for unstable D-branes of string theory. We investigate the tachyon condensation on a Dp-brane. The localized modes, including a tachyon, arise in the spectrum of a sphaleron solution of a \phi^4 field theory on M^{p+1}\times S^1. We use these modes to find a multiscalar tachyon potential living on the sphaleron world-volume. A complete cancelation between brane tension and the minimum of the tachyon potential is found as the size of the circle becomes small.Comment: To appear in JHEP, 13 pages, 2 eps figures, minor changes and references adde

    Approximative Analytic Study of Fermions in Magnetar's Crust; Ultra-relativistic Plane Waves, Heun and Mathieu Solutions and Beyond

    Full text link
    Working with a magnetic field periodic along OzOz and decaying in time, we deal with the Dirac-type equation characterizing the fermions evolving in magnetar's crust. For ultra-relativistic particles, one can employ the perturbative approach, to compute the conserved current density components. If the magnetic field is frozen and the magnetar is treated as a stationary object, the fermion's wave function is expressed in terms of the Heun's Confluent functions. Finally, we are extending some previous investigations on the linearly independent fermionic modes solutions to the Mathieu's equation and we discuss the energy spectrum and the Mathieu Characteristic Exponent.Comment: Accepted for publication in Astrophysics & Space Science, 15 pages, No figure

    Foreword

    Full text link

    TABLES

    Full text link
    corecore