3,584 research outputs found
Optical properties of the vibrations in charged C molecules
The transition strengths for the four infrared-active vibrations of charged
C molecules are evaluated in self-consistent density functional theory
using the local density approximation. The oscillator strengths for the second
and fourth modes are strongly enhanced relative to the neutral C
molecule, in good agreement with the experimental observation of ``giant
resonances'' for those two modes. Previous theory, based on a ``charged
phonon'' model, predicted a quadratic dependence of the oscillator strength on
doping, but this is not borne out in our calculations.Comment: 10 pages, RevTeX3.
Stokesian jellyfish: Viscous locomotion of bilayer vesicles
Motivated by recent advances in vesicle engineering, we consider
theoretically the locomotion of shape-changing bilayer vesicles at low Reynolds
number. By modulating their volume and membrane composition, the vesicles can
be made to change shape quasi-statically in thermal equilibrium. When the
control parameters are tuned appropriately to yield periodic shape changes
which are not time-reversible, the result is a net swimming motion over one
cycle of shape deformation. For two classical vesicle models (spontaneous
curvature and bilayer coupling), we determine numerically the sequence of
vesicle shapes through an enthalpy minimization, as well as the fluid-body
interactions by solving a boundary integral formulation of the Stokes
equations. For both models, net locomotion can be obtained either by
continuously modulating fore-aft asymmetric vesicle shapes, or by crossing a
continuous shape-transition region and alternating between fore-aft asymmetric
and fore-aft symmetric shapes. The obtained hydrodynamic efficiencies are
similar to that of other low Reynolds number biological swimmers, and suggest
that shape-changing vesicles might provide an alternative to flagella-based
synthetic microswimmers
POTs: Protective Optimization Technologies
Algorithmic fairness aims to address the economic, moral, social, and
political impact that digital systems have on populations through solutions
that can be applied by service providers. Fairness frameworks do so, in part,
by mapping these problems to a narrow definition and assuming the service
providers can be trusted to deploy countermeasures. Not surprisingly, these
decisions limit fairness frameworks' ability to capture a variety of harms
caused by systems.
We characterize fairness limitations using concepts from requirements
engineering and from social sciences. We show that the focus on algorithms'
inputs and outputs misses harms that arise from systems interacting with the
world; that the focus on bias and discrimination omits broader harms on
populations and their environments; and that relying on service providers
excludes scenarios where they are not cooperative or intentionally adversarial.
We propose Protective Optimization Technologies (POTs). POTs provide means
for affected parties to address the negative impacts of systems in the
environment, expanding avenues for political contestation. POTs intervene from
outside the system, do not require service providers to cooperate, and can
serve to correct, shift, or expose harms that systems impose on populations and
their environments. We illustrate the potential and limitations of POTs in two
case studies: countering road congestion caused by traffic-beating
applications, and recalibrating credit scoring for loan applicants.Comment: Appears in Conference on Fairness, Accountability, and Transparency
(FAT* 2020). Bogdan Kulynych and Rebekah Overdorf contributed equally to this
work. Version v1/v2 by Seda G\"urses, Rebekah Overdorf, and Ero Balsa was
presented at HotPETS 2018 and at PiMLAI 201
A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome
Demonstration of the temporal matter-wave Talbot effect for trapped matter waves
We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of an
array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
A statistical model for mapping morphological shape
<p>Abstract</p> <p>Background</p> <p>Living things come in all shapes and sizes, from bacteria, plants, and animals to humans. Knowledge about the genetic mechanisms for biological shape has far-reaching implications for a range spectrum of scientific disciplines including anthropology, agriculture, developmental biology, evolution and biomedicine.</p> <p>Results</p> <p>We derived a statistical model for mapping specific genes or quantitative trait loci (QTLs) that control morphological shape. The model was formulated within the mixture framework, in which different types of shape are thought to result from genotypic discrepancies at a QTL. The EM algorithm was implemented to estimate QTL genotype-specific shapes based on a shape correspondence analysis. Computer simulation was used to investigate the statistical property of the model.</p> <p>Conclusion</p> <p>By identifying specific QTLs for morphological shape, the model developed will help to ask, disseminate and address many major integrative biological and genetic questions and challenges in the genetic control of biological shape and function.</p
Azimuthal anisotropy at RHIC: the first and fourth harmonics
We report the first observations of the first harmonic (directed flow, v_1),
and the fourth harmonic (v_4), in the azimuthal distribution of particles with
respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion
Collider (RHIC). Both measurements were done taking advantage of the large
elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it
is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 6 pages with 3 figures, as accepted for Phys. Rev. Letters The data
tables are at
http://www.star.bnl.gov/central/publications/pubDetail.php?id=3
Novel Salicylic Acid Analogs Induce a Potent Defense Response in Arabidopsis
The master regulator of salicylic acid (SA)-mediated plant defense, NPR1 (NONEXPRESSER OF PR GENES 1) and its paralogs NPR3 and NPR4, act as SA receptors. After the perception of a pathogen, plant cells produce SA in the chloroplast. In the presence of SA, NPR1 protein is reduced from oligomers to monomers, and translocated into the nucleus. There, NPR1 binds to TGA, TCP, and WRKY transcription factors to induce expression of plant defense genes. A list of compounds structurally similar to SA was generated using ChemMine Tools and its Clustering Toolbox. Several of these analogs can induce SA-mediated defense and inhibit growth of Pseudomonas syringae in Arabidopsis. These analogs, when sprayed on Arabidopsis, can induce the accumulation of the master regulator of plant defense NPR1. In a yeast two-hybrid system, these analogs can strengthen the interactions among NPR proteins. We demonstrated that these analogs can induce the expression of the defense marker gene PR1. Furthermore, we hypothesized that these SA analogs could be potent tools against the citrus greening pathogen Candidatus liberibacter spp. In fact, our results suggest that the SA analogs we tested using Arabidopsis may also be effective for inducing a defense response in citrus. Several SA analogs consistently strengthened the interactions between citrus NPR1 and NPR3 proteins in a yeast two-hybrid system. In future assays, we plan to test whether these analogs avoid degradation by SA hydroxylases from plant pathogens. In future assays, we plan to test whether these analogs avoid degradation by SA hydroxylases from plant pathogens
- …
