1,013 research outputs found

    Efficient Cosmological Parameter Estimation from Microwave Background Anisotropies

    Full text link
    We revisit the issue of cosmological parameter estimation in light of current and upcoming high-precision measurements of the cosmic microwave background power spectrum. Physical quantities which determine the power spectrum are reviewed, and their connection to familiar cosmological parameters is explicated. We present a set of physical parameters, analytic functions of the usual cosmological parameters, upon which the microwave background power spectrum depends linearly (or with some other simple dependence) over a wide range of parameter values. With such a set of parameters, microwave background power spectra can be estimated with high accuracy and negligible computational effort, vastly increasing the efficiency of cosmological parameter error determination. The techniques presented here allow calculation of microwave background power spectra 10510^5 times faster than comparably accurate direct codes (after precomputing a handful of power spectra). We discuss various issues of parameter estimation, including parameter degeneracies, numerical precision, mapping between physical and cosmological parameters, and systematic errors, and illustrate these considerations with an idealized model of the MAP experiment.Comment: 22 pages, 12 figure

    A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation.

    Get PDF
    Mice carrying the Tight skin (Tsk) mutation have thickened skin and visceral fibrosis resulting from an accumulation of extracellular matrix molecules. These and other connective tissue abnormalities have made Tskl + mice models for scleroderma, hereditary emphysema, and myocardial hypertrophy. Previously we localized Tsk to mouse chromosome 2 in a region syntenic with human chromosome 15. The microfibrillar glycoprotein gene, fibrillin 1 (FBN1), on human chromosome 15q, provided a candidate for the Tsk mutation. We now demonstrate that the Tsk chromosome harbors a 30- to 40-kb genomic duplication within the Fbn1 gene that results in a larger than normal in-frame Fbn1 transcript. These findings provide hypotheses to explain some of the phenotypic characteristics of Tskl + mice and the lethality of Tsk/Tsk embryos

    Southern Cosmology Survey III: QSO's from Combined GALEX and Optical Photometry

    Full text link
    We present catalogs of QSO candidates selected using photometry from GALEX combined with SDSS in the Stripe 82 region and Blanco Cosmology Survey (BCS) near declination -55 degrees. The SDSS region contains ~700 objects with magnitude i < 20 and ~3600 objects with i < 21.5 in a ~60 square degree sky region, while the BCS region contains ~280 objects with magnitude i < 20 and ~2000 objects with i < 21.5 for a 11 square degree sky region that is being observed by three current microwave Sunyaev-Zeldovich surveys. Our QSO catalog is the first one in the BCS region. Deep GALEX exposures (~2000 seconds in FUV and NUV, except in three fields) provide high signal-to-noise photometry in the GALEX bands (FUV, NUV < 24.5 mag). From this data, we select QSO candidates using only GALEX and optical r-band photometry, using the method given by Atlee and Gould (2008). In the Stripe 82 field, 60% (30%) of the GALEX selected QSO's with optical magnitude i<20 (i<21.5) also appear in the Richards et al. (2008) QSO catalog constructed using 5-band optical SDSS photometry. Comparison with the same catalog by Richards et al. shows that the completeness of the sample is approximately 40%(25%). However, for regions of the sky with very low dust extinction, like the BCS 23hr field and the Stripe 82 between 0 and 10 degrees in RA, our completeness is close to 95%, demonstrating that deep GALEX observations are almost as efficient as multi-wavelength observations at finding QSO's. GALEX observations thus provide a viable alternate route to QSO catalogs in sky regions where u-band optical photometry is not available. The full catalog is available at http://www.ice.csic.es/personal/jimenez/PHOTOZComment: Submitted to ApJ

    Southern Cosmology Survey I: Optical Cluster Detections and Predictions for the Southern Common-Area Millimeter-Wave Experiments

    Full text link
    We present first results from the Southern Cosmology Survey, a new multiwavelength survey of the southern sky coordinated with the Atacama Cosmology Telescope (ACT), a recently commissioned ground-based mm-band Cosmic Microwave Background experiment. This article presents a full analysis of archival optical multi-band imaging data covering an 8 square degree region near right ascension 23 hours and declination -55 degrees, obtained by the Blanco 4-m telescope and Mosaic-II camera in late 2005. We describe the pipeline we have developed to process this large data volume, obtain accurate photometric redshifts, and detect optical clusters. Our cluster finding process uses the combination of a matched spatial filter, photometric redshift probability distributions and richness estimation. We present photometric redshifts, richness estimates, luminosities, and masses for 8 new optically-selected clusters with mass greater than 3\times10^{14}M_{\sun} at redshifts out to 0.7. We also present estimates for the expected Sunyaev-Zel'dovich effect (SZE) signal from these clusters as specific predictions for upcoming observations by ACT, the South Pole Telescope and Atacama Pathfinder Experiment.Comment: 12 pages, 8 figures, accepted in ApJ. Reflects changes from referee as well as a new Table providing mass estimates and positions for all clusters in the surve

    Southern Cosmology Survey II: Massive Optically-Selected Clusters from 70 square degrees of the SZE Common Survey Area

    Full text link
    We present a catalog of 105 rich and massive (M>3\times10^{14}M_{\sun}) optically-selected clusters of galaxies extracted from 70 square-degrees of public archival griz imaging from the Blanco 4-m telescope acquired over 45 nights between 2005 and 2007. We use the clusters' optically-derived properties to estimate photometric redshifts, optical luminosities, richness, and masses. We complement the optical measurements with archival XMM-Newton and ROSAT X-ray data which provide additional luminosity and mass constraints on a modest fraction of the cluster sample. Two of our clusters show clear evidence for central lensing arcs; one of these has a spectacular large-diameter, nearly-complete Einstein Ring surrounding the brightest cluster galaxy. A strong motivation for this study is to identify the massive clusters that are expected to display prominent signals from the Sunyaev-Zeldovich Effect (SZE) and therefore be detected in the wide-area mm-band surveys being conducted by both the Atacama Cosmology Telescope and the South Pole Telescope. The optical sample presented here will be useful for verifying new SZE cluster candidates from these surveys, for testing the cluster selection function, and for stacking analyzes of the SZE data.Comment: 13 pages, 7 Figures. Accepted for publication to ApJSS. Full resolution plots and additional material available at http://peumo.rutgers.edu/~felipe/e-prints

    Insight Timer

    Get PDF
    Mission Statement: To provide cost-effective avenues for tangible stress reduction and relief for low-income communities such as Wellspring. Overview: Insight Timer is a mobile application that offers guided meditation to calm the mind, reduce anxiety, manage stress, sleep deeply, and improve happiness. While also offering calm music, courses, live events, and workshops in various languages. (Insight Network, Inc., n.d.) Problem Statement: Individuals who face poverty experience mental challenges due to stressors caused by poverty due to insecurity and uncertainty about food, housing, and income. Low-income communities tend to have limited resources, poor housing, experience high crime rates, violence rate, and inadequate education. This leads to individuals encountering several barriers to receiving and accessing mental health services. (Low-Income Communities- Anxiety and Depression Association of America, ADAA, n.d.

    A Comparison of Wolf Depredation Sites in Areas With Migratory and Resident Elk

    Get PDF
    As large carnivores recover in many wilderness areas and mixed-use landscapes, wildlife management agencies must seek ways to minimize private property damage while maintaining viable populations. Although much is known about carnivore-livestock conflicts, drivers of these processes in the Northern Rocky Mountains are still emerging amid the dynamic conditions of recovering predator populations (gray wolves [Canis lupus] and grizzly bears [Ursus arctos horribilis]), declining elk productivity, and the re-distribution of migratory and resident elk subpopulations. There has been little research to date that examines the influence of fine-scale elk distribution and movements on patterns of livestock depredation. In this study, we analyze four years of cattle depredation data, two years of summer and fall wolf predation data (n = 4 wolves), and three years of elk movement data (n= 86 elk) to assess the influence of migratory and resident prey on the location and occurrence of wolf depredations on cattle. Wolves living in migratory elk areas face low densities of their preferred prey in summer, when elk depart for higher elevations inside Yellowstone National Park (YNP), while wolves living in the resident elk area have access to abundant elk year round. Wolves living in both areas have the potential to interact with several thousand head of cattle. We used logistic regression to compare the relative influence of landscape features on the risk of livestock depredation in the migratory and resident elk areas. Locations of wolf-killed cattle showed differences between the migratory elk area and the resident elk area. Depredation sites in the resident elk area were associated with habitats closer to roads and with high elk density, while depredation sites in the migratory elk area were associated with dens, streams, and open habitat away from the forest edge. Our findings indicate that knowledge of ungulate distributions and migration patterns can help understand and predict hotspots of wolf conflict with livestock

    an individual participant data meta-analysis

    Get PDF
    Background The impact of neuraminidase inhibitors (NAIs) on influenza-related pneumonia (IRP) is not established. Our objective was to investigate the association between NAI treatment and IRP incidence and outcomes in patients hospitalised with A(H1N1)pdm09 virus infection. Methods A worldwide meta- analysis of individual participant data from 20 634 hospitalised patients with laboratory-confirmed A(H1N1)pdm09 (n = 20 021) or clinically diagnosed (n = 613) ‘pandemic influenza’. The primary outcome was radiologically confirmed IRP. Odds ratios (OR) were estimated using generalised linear mixed modelling, adjusting for NAI treatment propensity, antibiotics and corticosteroids. Results Of 20 634 included participants, 5978 (29·0%) had IRP; conversely, 3349 (16·2%) had confirmed the absence of radiographic pneumonia (the comparator). Early NAI treatment (within 2 days of symptom onset) versus no NAI was not significantly associated with IRP [adj. OR 0·83 (95% CI 0·64–1·06; P = 0·136)]. Among the 5978 patients with IRP, early NAI treatment versus none did not impact on mortality [adj. OR = 0·72 (0·44–1·17; P = 0·180)] or likelihood of requiring ventilatory support [adj. OR = 1·17 (0·71–1·92; P = 0·537)], but early treatment versus later significantly reduced mortality [adj. OR = 0·70 (0·55–0·88; P = 0·003)] and likelihood of requiring ventilatory support [adj. OR = 0·68 (0·54–0·85; P = 0·001)]. Conclusions Early NAI treatment of patients hospitalised with A(H1N1)pdm09 virus infection versus no treatment did not reduce the likelihood of IRP. However, in patients who developed IRP, early NAI treatment versus later reduced the likelihood of mortality and needing ventilatory support

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected
    corecore