453 research outputs found
Analysing user physiological responses for affective video summarisation
This is the post-print version of the final paper published in Displays. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2009 Elsevier B.V.Video summarisation techniques aim to abstract the most significant content from a video stream. This is typically achieved by processing low-level image, audio and text features which are still quite disparate from the high-level semantics that end users identify with (the ‘semantic gap’). Physiological responses are potentially rich indicators of memorable or emotionally engaging video content for a given user. Consequently, we investigate whether they may serve as a suitable basis for a video summarisation technique by analysing a range of user physiological response measures, specifically electro-dermal response (EDR), respiration amplitude (RA), respiration rate (RR), blood volume pulse (BVP) and heart rate (HR), in response to a range of video content in a variety of genres including horror, comedy, drama, sci-fi and action. We present an analysis framework for processing the user responses to specific sub-segments within a video stream based on percent rank value normalisation. The application of the analysis framework reveals that users respond significantly to the most entertaining video sub-segments in a range of content domains. Specifically, horror content seems to elicit significant EDR, RA, RR and BVP responses, and comedy content elicits comparatively lower levels of EDR, but does seem to elicit significant RA, RR, BVP and HR responses. Drama content seems to elicit less significant physiological responses in general, and both sci-fi and action content seem to elicit significant EDR responses. We discuss the implications this may have for future affective video summarisation approaches
Stokesian jellyfish: Viscous locomotion of bilayer vesicles
Motivated by recent advances in vesicle engineering, we consider
theoretically the locomotion of shape-changing bilayer vesicles at low Reynolds
number. By modulating their volume and membrane composition, the vesicles can
be made to change shape quasi-statically in thermal equilibrium. When the
control parameters are tuned appropriately to yield periodic shape changes
which are not time-reversible, the result is a net swimming motion over one
cycle of shape deformation. For two classical vesicle models (spontaneous
curvature and bilayer coupling), we determine numerically the sequence of
vesicle shapes through an enthalpy minimization, as well as the fluid-body
interactions by solving a boundary integral formulation of the Stokes
equations. For both models, net locomotion can be obtained either by
continuously modulating fore-aft asymmetric vesicle shapes, or by crossing a
continuous shape-transition region and alternating between fore-aft asymmetric
and fore-aft symmetric shapes. The obtained hydrodynamic efficiencies are
similar to that of other low Reynolds number biological swimmers, and suggest
that shape-changing vesicles might provide an alternative to flagella-based
synthetic microswimmers
Factors in AIDS dementia complex trial design: Results and lessons from the abacavir trial
OBJECTIVES: To determine the efficacy of adding abacavir (Ziagen, ABC) to optimal stable background antiretroviral therapy (SBG) to AIDS dementia complex (ADC) patients and address trial design. DESIGN: Phase III randomized, double-blind placebo-controlled trial. SETTING: Tertiary outpatient clinics. PARTICIPANTS: ADC patients on SBG for ≥8 wk. INTERVENTIONS: Participants were randomized to ABC or matched placebo for 12 wk. OUTCOME MEASURES: The primary outcome measure was the change in the summary neuropsychological Z score (NPZ). Secondary measures were HIV RNA and the immune activation markers β-2 microglobulin, soluble tumor necrosis factor (TNF) receptor 2, and quinolinic acid. RESULTS: 105 participants were enrolled. The median change in NPZ at week 12 was +0.76 for the ABC + SBG and +0.63 for the SBG groups (p = 0.735). The lack of efficacy was unlikely related to possible limited antiviral efficacy of ABC: at week 12 more ABC than placebo participants had plasma HIV RNA ≤400 copies/mL (p = 0.002). There were, however, other factors. Two thirds of patients were subsequently found to have had baseline resistance to ABC. Second, there was an unanticipated beneficial effect of SBG that extended beyond 8 wk to 5 mo, thereby rendering some of the patients at baseline unstable. Third, there was an unexpectedly large variability in neuropsychological performance that underpowered the study. Fourth, there was a relative lack of activity of ADC: 56% of all patients had baseline cerebrospinal fluid (CSF) HIV-1 RNA <100 copies/mL and 83% had CSF β-2 microglobulin <3 nmol/L at baseline. CONCLUSIONS: The addition of ABC to SBG for ADC patients was not efficacious, possibly because of the inefficacy of ABC per se, baseline drug resistance, prolonged benefit from existing therapy, difficulties with sample size calculations, and lack of disease activity. Assessment of these trial design factors is critical in the design of future ADC trials
nIFTy galaxy cluster simulations – V. Investigation of the cluster infall region
We examine the properties of the galaxies and dark matter haloes residing in the cluster infall region surrounding the simulated cold dark matter galaxy cluster studied by Elahi et al. at = 0. The 1.1 × 10 M galaxy cluster has been simulated with eight different hydrodynamical codes containing a variety of hydrodynamic solvers and sub-grid schemes. All models completed a dark-matter-only, non-radiative and full-physics run from the same initial conditions. The simulations contain dark matter and gas with mass resolution = 9.01 × 10 M and = 1.9 × 10 M, respectively. We find that the synthetic cluster is surrounded by clear filamentary structures that contain ~60 per cent of haloes in the infall region with mass ~10–10 M, including 2–3 group-sized haloes (>10 M). However, we find that only ~10 per cent of objects in the infall region are sub-haloes residing in haloes, which may suggest that there is not much ongoing pre-processing occurring in the infall region at = 0. By examining the baryonic content contained within the haloes, we also show that the code-to-code scatter in stellar fraction across all halo masses is typically ~2 orders of magnitude between the two most extreme cases, and this is predominantly due to the differences in sub-grid schemes and calibration procedures that each model uses. Models that do not include active galactic nucleus feedback typically produce too high stellar fractions compared to observations by at least ~1 order of magnitude.The authors would like the acknowledge the Centre for High Performance Computing in Rosebank, Cape Town, for financial support and for hosting the ‘Comparison Cape Town’ workshop in 2016, July. The authors would further like to acknowledge the support of the International Centre for Radio Astronomy Research (ICRAR) node at the University of Western Australia (UWA) in hosting the precursor workshop ‘Perth Simulated Cluster Comparison’ in 2015, March; the financial support of the UWA Research Collaboration Award 2014 and 2015 schemes; the financial support of the ARC Centre of Excellence for All Sky Astrophysics (CAASTRO) CE110001020 and ARC Discovery Projects DP130100117 and DP140100198. We would also like to thank the Instituto de Fisica Teorica (IFT-UAM/CSIC in Madrid) for its support, via the Centro de Excelencia Severo Ochoa Program under Grant No. SEV- 2012-0249, during the three-week workshop ‘nIFTy Cosmology’ in 2014, where the foundation for the whole comparison project was established.
JA acknowledges support from a post-graduate award from STFC. PJE is supported by the SSimPL programme and the Sydney Institute for Astronomy (SIfA) and Australian Research Council (ARC) grants DP130100117 and DP140100198. AK is supported by the Ministerio de Econom´ıa y Competitividad (MINECO) in Spain through grant AYA2012-31101 as well as the ConsoliderIngenio 2010 Programme of the Spanish Ministerio de Ciencia e Innovacion (MICINN) under grant MultiDark CSD2009-00064. ´ He also acknowledges support from the ARC grant DP140100198. He further thanks Noonday Underground for surface noise. STK acknowledges support from STFC through grant ST/L000768/1. CP acknowledges the support of the ARC through Future Fellowship FT130100041 and Discovery Project DP140100198. WC and CP acknowledge the support of ARC DP130100117. GY and FS acknowledge support from MINECO (Spain) through the grant AYA 2012-31101. GY thanks also the Red Espanola de Supercomputa- ˜ cion for granting the computing time in the Marenostrum Supercomputer at BSC, where all the MUSIC simulations have been performed. AMB is supported by the DFG Research Unit 1254 ‘Magnetisation of interstellar and intergalactic media’ and by the DFG Cluster of Excellence ‘Universe’. GM acknowledge support from the PRIN-MIUR 2012 Grant ‘The Evolution of Cosmic Baryons’ funded by the Italian Minister of University and Research, by the PRIN-INAF 2012 Grant ‘Multi-scale Simulations of Cosmic Structures’, by the INFN INDARK Grant and by the ‘Consorzio per la Fisica di Trieste’. IGM acknowledges support from an STFC Advanced Fellowship. EP acknowledges support by the ERC grant ‘The Emergence of Structure During the Epoch of Reionization’
Contributors to the December Issue/Notes
Notes by L. E. Merman, John F. Power, Arthur May, Eugene C. Wohlhorn, Francis J. Paulson, Arthur M. Diamond, Joseph Brady, Roger D. Gustafson, Richard G. Miller, and Thomas S. Gordon, Jr
Contributors to the March Issue/Notes
Notes by Robert A. Oberfell, John Power, John D. O\u27Neill, Arthur M. Diamond, Theodore M. Ryan, C. G. Remmo, and Francis J. Paulson
Contributors to the March Issue/Notes
Notes by Robert A. Oberfell, John Power, John D. O\u27Neill, Arthur M. Diamond, Theodore M. Ryan, C. G. Remmo, and Francis J. Paulson
The Three Hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications
We introduce the The Three Hundred project, an endeavour to model 324 large galaxy clusters with full-physics hydrodynamical re-simulations. Here we present the dataset and study the differences to observations for fundamental galaxy cluster properties and scaling relations. We find that the modelled galaxy clusters are generally in reasonable agreement with observations with respect to baryonic fractions and gas scaling relations at redshift z = 0. However, there are still some (model-dependent) differences, such as central galaxies being too massive, and galaxy colours (g − r) being bluer (about 0.2 dex lower at the peak position) than in observations. The agreement in gas scaling relations down to 1013 h−1M⊙ between the simulations indicates that particulars of the sub-grid modelling of the baryonic physics only has a weak influence on these relations. We also include – where appropriate – a comparison to three semi-analytical galaxy formation models as applied to the same underlying dark matter only simulation. All simulations and derived data products are publicly available
- …
