143 research outputs found

    Observer-Based Disturbance Rejection Control for Switched Nonlinear Networked Systems under Event-Triggered Scheme

    Get PDF
    This paper employs the disturbance rejection technique for a class of switched nonlinear networked control systems (SNNCSs) with an observer-based event-triggered scheme. To estimate the influence of exogenous disturbances on the proposed system, the equivalent input disturbance (EID) technique is employed to construct an EID estimator. To provide adequate disturbance rejection performance, a new control law is built that includes the EID estimation. Furthermore, to preserve communication resources, an event-based mechanism for control signal transmission is devised and implemented. The primary goal of this work is to provide an observer-based event-triggered disturbance rejection controller that ensures the resulting closed-loop form of the examined systems is exponentially stable. Specifically, by employing a Lyapunov–Krasovskii approach, a new set of sufficient conditions in the form of linear matrix inequalities (LMIs) is derived, ensuring the exponential stabilization criteria are met. Eventually, a numerical example is used to demonstrate the efficacy and practicality of the proposed control mechanism

    The role of hormones and aromatase inhibitors on breast tumor growth and general health in a postmenopausal mouse model

    Get PDF
    BACKGROUND: Breast cancer is the most frequently diagnosed cancer in women in the United States. Approximately 70% of breast cancers are diagnosed in postmenopausal women. Major clinical trials and experimental studies showed that aromatase inhibitors are effective against postmenopausal breast cancer. Despite their effectiveness in reducing tumor recurrence, aromatase inhibitors have adverse effects on the cardiovascular system and increase osteoporosis and bone fractures. Our study is aimed at investigating the role of natural steroid hormones on serum cardiovascular and bone resorption markers in an established mouse model mimicking postmenopausal breast cancer. METHODS: Ovariectomized nude mice were transplanted with MCF-7 breast cancer cells constitutively expressing aromatase. The mice were treated with different combinations and doses of steroids, [estrogen (25 pg, 40 pg, 100 pg), progesterone (6 ng) and testosterone (50 ng)] along with dehydroepiandrostenedione (100 ug). Serum levels of HDL, LDL/VLDL, free and total cholesterol, total and bone specific alkaline phosphatase and triglycerides were analyzed after 5, 10 and 15 months. RESULTS: Free cholesterol and LDL/VLDL levels in serum were reduced in groups mimicking estrous cycle and menstrual cycle hormones treatment. HDL cholesterol was increased in all the hormone treated groups except the estrous cycle-mimicking group. Bone specific alkaline phosphatase was decreased in menstrual cycle levels of estrogen and progesterone treatment. CONCLUSIONS: All together our results show that use of natural hormones in appropriate combinations have beneficial effects on cardiac and bone toxicity, along with better tumor reduction than current treatments

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Transgenic Mice Expressing Functional TCRs Specific to Cardiac Myhc-α 334–352 on Both CD4 and CD8 T Cells Are Resistant to the Development of Myocarditis on C57BL/6 Genetic Background

    Get PDF
    Myocarditis is a predominant cause of congestive heart failure and sudden death in children and young adolescents that can lead to dilated cardiomyopathy. Lymphocytic myocarditis mediated by T cells can result from the recognition of cardiac antigens that may involve CD4 or CD8 T cells or both. In this report, we describe the generation of T cell receptor (TCR) transgenic mice on a C57BL/6 genetic background specific to cardiac myosin heavy chain (Myhc)-α 334–352 and make the following observations: First, we verified that Myhc-α 334–352 was immunogenic in wild-type C57BL/6 mice and induced antigen-specific CD4 T cell responses despite being a poor binder of IAb; however, the immunized animals developed only mild myocarditis. Second, TCRs specific to Myhc-α 334–352 in transgenic mice were expressed in both CD4 and CD8 T cells, suggesting that the expression of epitope-specific TCR is common to both cell types. Third, although T cells from naïve transgenic mice did not respond to Myhc-α 334–352, both CD4 and CD8 T cells from animals immunized with Myhc-α 334–352 responded to the peptide, indicating that antigen priming is necessary to break tolerance. Fourth, although the transgenic T cells could produce significant amounts of interferon- and interleukin-17, the immunized animals developed only mild disease, indicating that other soluble factors might be necessary for developing severe myocarditis. Alternatively, the C57BL/6 genetic background might be a major contributing factor for resistance to the development of myocarditis. Taken together, our model permits the determination of the roles of both CD4 and CD8 T cells to understand the disease-resistance mechanisms of myocarditis in a single transgenic system antigen-specifically

    Insight into the role of metal support interface through the synergistic effect between Ag and α-Bi2Mo3O12 support for the selective oxidation of propylene to acrolein

    Get PDF
    Abstract Pre-synthesized morphologically tailored size and shape selective silver nanoparticles (AgNPs) decorated on bismuth molybdate support (AgNPs/α–Bi2Mo3O12) using simple wet impregnation method was employed. The prepared AgNPs/α-Bi2Mo3O12 nanocatalysts were tested in the selective partial oxidation of propylene to acrolein reaction. The introduction of well-defined size and shape of AgNPs on α–Bi2Mo3O12 is greatly promoted the strong metal support interactions (SMSI), creation of oxygen vacancies (Ov) and high propylene adsorption binding energy (calculated by DFT). The strong metal support interactions between Ag and α-Bi2Mo3O12 is clearly elucidated by the high quality HRTEM and STEM–HAADF microscopic images. In addition, surface atomic molar ratio measured by XPS analysis determined the key redox properties of AgNPs/α–Bi2Mo3O12 system and their influence on the overall catalytic efficiency in the oxidation of propylene via reduction of Mo6+ to Mo5+ initiated at low temperatures in Ag/α–Bi2Mo3O12 system. The Mo reduction is further confirmed by the activated oxygen removal from the MoO42– moieties after Ag incorporation on α–Bi2Mo3O12. Thus, confirmed the oxidation reaction pathway follows a Mars–van–Krevelen process. Further, DFT calculations supported the propylene adsorption is more favorable over Ag/α–Bi2Mo3O12 than bare α–Bi2Mo3O12 support. The propylene oxidation performance over Ag/α–Bi2Mo3O12 system was 5.5 times higher than bare α–Bi2Mo3O12 support, probably due to an enabled strong metal support interaction and increased oxygen vacancies.Abstract Pre-synthesized morphologically tailored size and shape selective silver nanoparticles (AgNPs) decorated on bismuth molybdate support (AgNPs/α–Bi2Mo3O12) using simple wet impregnation method was employed. The prepared AgNPs/α-Bi2Mo3O12 nanocatalysts were tested in the selective partial oxidation of propylene to acrolein reaction. The introduction of well-defined size and shape of AgNPs on α–Bi2Mo3O12 is greatly promoted the strong metal support interactions (SMSI), creation of oxygen vacancies (Ov) and high propylene adsorption binding energy (calculated by DFT). The strong metal support interactions between Ag and α-Bi2Mo3O12 is clearly elucidated by the high quality HRTEM and STEM–HAADF microscopic images. In addition, surface atomic molar ratio measured by XPS analysis determined the key redox properties of AgNPs/α–Bi2Mo3O12 system and their influence on the overall catalytic efficiency in the oxidation of propylene via reduction of Mo6+ to Mo5+ initiated at low temperatures in Ag/α–Bi2Mo3O12 system. The Mo reduction is further confirmed by the activated oxygen removal from the MoO42– moieties after Ag incorporation on α–Bi2Mo3O12. Thus, confirmed the oxidation reaction pathway follows a Mars–van–Krevelen process. Further, DFT calculations supported the propylene adsorption is more favorable over Ag/α–Bi2Mo3O12 than bare α–Bi2Mo3O12 support. The propylene oxidation performance over Ag/α–Bi2Mo3O12 system was 5.5 times higher than bare α–Bi2Mo3O12 support, probably due to an enabled strong metal support interaction and increased oxygen vacancies

    Diagnostic Accuracy of Artificial Intelligence- Based Models in Periodontitis: A Systematic Review Meta-Analysis

    Get PDF
    Introduction: Periodontitis is an irreversible disease caused by host-microbe interactions leading to the destruction of tooth-supporting structures. Its complex aetiology makes early diagnosis, staging, and treatment planning challenging but crucial to prevent disease progression. Artificial intelligence (AI) models, particularly Convolutional Neural Networks (CNNs), analyze complex variables, identify patterns, and make accurate predictions. Their use in periodontitis diagnosis can enhance diagnostic accuracy, reduce human error, and provide consistent results. Objectives: This review evaluates the current landscape of AI applications in diagnosing periodontitis, with a focus on CNN-based models used directly or through proxy indicators. Methods: A systematic literature search was conducted in PubMed, Web of Science, CINAHL, Embase, Cochrane Library, and ClinicalTrials.gov up to December 2019. Included studies assessed the diagnostic accuracy of AI models for periodontitis using cross-sectional, case-control, or cohort designs. Aggressive periodontitis cases were excluded. Risk of bias was assessed using the PROBAST tool, and results are presented as a narrative synthesis. Results: AI models, particularly CNNs, demonstrated high diagnostic accuracy for periodontal bone loss using radiographic evidence, often surpassing expert performance. Models like DenseNet and U-Net excelled in segmentation and classification. Challenges included poor image quality, imbalanced datasets, and reliance on proxy indicators, highlighting the need for multivariable approaches. Discussion: AI shows promise in standardizing and scaling periodontitis diagnosis, addressing manpower shortages, and improving outcomes. However, future research should focus on integrating multivariable diagnostic approaches and refining model interpretability for clinical applicability

    The cryopreservation process induces alterations in proteins associated with bull sperm quality: The equilibration process could be a probable critical control point

    Get PDF
    The present study quantitatively characterized the proteomic changes in bull spermatozoa induced by the cryopreservation process. We performed high-throughput comparative global proteomic profiling of freshly ejaculated (before cryopreservation), equilibrated (refrigerated storage; during cryopreservation), and frozen (ultralow temperature; after cryopreservation) bull spermatozoa. Using the liquid chromatography–mass spectrometry (LC-MS/MS) technique, a total of 1,692, 1,415, and 1,286 proteins were identified in fresh, equilibrated, and cryopreserved spermatozoa, respectively. When the proteome of fresh spermatozoa was compared with equilibrated spermatozoa, we found that 166 proteins were differentially expressed. When equilibrated spermatozoa were compared with cryopreserved spermatozoa, we found that 147 proteins were differentially expressed between them. Similarly, we found that 156 proteins were differentially expressed between fresh and cryopreserved spermatozoa. Among these proteins, the abundance of 105 proteins was lowered during the equilibration process itself, while the abundance of 43 proteins was lowered during ultralow temperature preservation. Remarkably, the equilibration process lowered the abundance of sperm proteins involved in energy metabolism, structural integrity, and DNA repair and increased the abundance of proteins associated with proteolysis and protein degradation. The abundance of sperm proteins associated with metabolism, cGMP-PKG (cyclic guanosine 3′,5′-monophosphate-dependent protein kinase G) signaling, and regulation of the actin cytoskeleton was also altered during the equilibration process. Collectively, the present study showed that the equilibration step in the bull sperm cryopreservation process was the critical point for sperm proteome, during which a majority of proteomic alterations in sperm occurred. These findings are valuable for developing efficient protocols to minimize protein damage and to improve the quality and fertility of cryopreserved bull spermatozoa

    Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail

    Get PDF
    Using peptide arrays and binding to native histone proteins, we show that the ADD domain of Dnmt3a specifically interacts with the H3 histone 1–19 tail. Binding is disrupted by di- and trimethylation of K4, phosphorylation of T3, S10 or T11 and acetylation of K4. We did not observe binding to the H4 1–19 tail. The ADD domain of Dnmt3b shows the same binding specificity, suggesting that the distinct biological functions of both enzymes are not related to their ADD domains. To establish a functional role of the ADD domain binding to unmodified H3 tails, we analyzed the DNA methylation of in vitro reconstituted chromatin with Dnmt3a2, the Dnmt3a2/Dnmt3L complex, and the catalytic domain of Dnmt3a. All Dnmt3a complexes preferentially methylated linker DNA regions. Chromatin substrates with unmodified H3 tail or with H3K9me3 modification were methylated more efficiently by full-length Dnmt3a and full-length Dnmt3a/3L complexes than chromatin trimethylated at H3K4. In contrast, the catalytic domain of Dnmt3a was not affected by the H3K4me3 modification. These results demonstrate that the binding of the ADD domain to H3 tails unmethylated at K4 leads to the preferential methylation of DNA bound to chromatin with this modification state. Our in vitro results recapitulate DNA methylation patterns observed in genome-wide DNA methylation studies
    corecore