251 research outputs found

    The matricial relaxation of a linear matrix inequality

    Full text link
    Given linear matrix inequalities (LMIs) L_1 and L_2, it is natural to ask: (Q1) when does one dominate the other, that is, does L_1(X) PsD imply L_2(X) PsD? (Q2) when do they have the same solution set? Such questions can be NP-hard. This paper describes a natural relaxation of an LMI, based on substituting matrices for the variables x_j. With this relaxation, the domination questions (Q1) and (Q2) have elegant answers, indeed reduce to constructible semidefinite programs. Assume there is an X such that L_1(X) and L_2(X) are both PD, and suppose the positivity domain of L_1 is bounded. For our "matrix variable" relaxation a positive answer to (Q1) is equivalent to the existence of matrices V_j such that L_2(x)=V_1^* L_1(x) V_1 + ... + V_k^* L_1(x) V_k. As for (Q2) we show that, up to redundancy, L_1 and L_2 are unitarily equivalent. Such algebraic certificates are typically called Positivstellensaetze and the above are examples of such for linear polynomials. The paper goes on to derive a cleaner and more powerful Putinar-type Positivstellensatz for polynomials positive on a bounded set of the form {X | L(X) PsD}. An observation at the core of the paper is that the relaxed LMI domination problem is equivalent to a classical problem. Namely, the problem of determining if a linear map from a subspace of matrices to a matrix algebra is "completely positive".Comment: v1: 34 pages, v2: 41 pages; supplementary material is available in the source file, or see http://srag.fmf.uni-lj.si

    Representations of C*-dynamical systems implemented by Cuntz families

    Full text link
    Given a dynamical system (A,\al) where AA is a unital \ca-algebra and \al is a (possibly non-unital) *-endomorphism of AA, we examine families (π,{Ti})(\pi,\{T_i\}) such that π\pi is a representation of AA, {Ti}\{T_i\} is a Toeplitz-Cuntz family and a covariance relation holds. We compute a variety of non-selfadjoint operator algebras that depend on the choice of the covariance relation, along with the smallest \ca-algebra they generate, namely the \ca-envelope. We then relate each occurrence of the \ca-envelope to (a full corner of) an appropriate twisted crossed product. We provide a counterexample to show the extent of this variety. In the context of \ca-algebras, these results can be interpreted as analogues of Stacey's famous result, for non-automorphic systems and n>1n>1. Our study involves also the one variable generalized crossed products of Stacey and Exel. In particular, we refine a result that appears in the pioneering paper of Exel on (what is now known as) Exel systems.Comment: 29 pages; changes in subsection 1.2; close to publicatio

    Scaling by 5 on a 1/4-Cantor Measure

    Full text link
    Each Cantor measure (\mu) with scaling factor 1/(2n) has at least one associated orthonormal basis of exponential functions (ONB) for L^2(\mu). In the particular case where the scaling constant for the Cantor measure is 1/4 and two specific ONBs are selected for L^2(\mu), there is a unitary operator U defined by mapping one ONB to the other. This paper focuses on the case in which one ONB (\Gamma) is the original Jorgensen-Pedersen ONB for the Cantor measure (\mu) and the other ONB is is 5\Gamma. The main theorem of the paper states that the corresponding operator U is ergodic in the sense that only the constant functions are fixed by U.Comment: 34 page

    Operator theory and function theory in Drury-Arveson space and its quotients

    Full text link
    The Drury-Arveson space Hd2H^2_d, also known as symmetric Fock space or the dd-shift space, is a Hilbert function space that has a natural dd-tuple of operators acting on it, which gives it the structure of a Hilbert module. This survey aims to introduce the Drury-Arveson space, to give a panoramic view of the main operator theoretic and function theoretic aspects of this space, and to describe the universal role that it plays in multivariable operator theory and in Pick interpolation theory.Comment: Final version (to appear in Handbook of Operator Theory); 42 page

    The existence problem for dynamics of dissipative systems in quantum probability

    Full text link
    Motivated by existence problems for dissipative systems arising naturally in lattice models from quantum statistical mechanics, we consider the following CC^{\ast}-algebraic setting: A given hermitian dissipative mapping δ\delta is densely defined in a unital CC^{\ast}-algebra A\mathfrak{A}. The identity element in A{\frak A} is also in the domain of δ\delta. Completely dissipative maps δ\delta are defined by the requirement that the induced maps, (aij)(δ(aij))(a_{ij})\to (\delta (a_{ij})), are dissipative on the nn by nn complex matrices over A{\frak A} for all nn. We establish the existence of different types of maximal extensions of completely dissipative maps. If the enveloping von Neumann algebra of A{\frak A} is injective, we show the existence of an extension of δ\delta which is the infinitesimal generator of a quantum dynamical semigroup of completely positive maps in the von Neumann algebra. If δ\delta is a given well-behaved *-derivation, then we show that each of the maps δ\delta and δ-\delta is completely dissipative.Comment: 24 pages, LaTeX/REVTeX v. 4.0, submitted to J. Math. Phys.; PACS 02., 02.10.Hh, 02.30.Tb, 03.65.-w, 05.30.-

    Algebraic approach to quantum field theory on non-globally-hyperbolic spacetimes

    Get PDF
    The mathematical formalism for linear quantum field theory on curved spacetime depends in an essential way on the assumption of global hyperbolicity. Physically, what lie at the foundation of any formalism for quantization in curved spacetime are the canonical commutation relations, imposed on the field operators evaluated at a global Cauchy surface. In the algebraic formulation of linear quantum field theory, the canonical commutation relations are restated in terms of a well-defined symplectic structure on the space of smooth solutions, and the local field algebra is constructed as the Weyl algebra associated to this symplectic vector space. When spacetime is not globally hyperbolic, e.g. when it contains naked singularities or closed timelike curves, a global Cauchy surface does not exist, and there is no obvious way to formulate the canonical commutation relations, hence no obvious way to construct the field algebra. In a paper submitted elsewhere, we report on a generalization of the algebraic framework for quantum field theory to arbitrary topological spaces which do not necessarily have a spacetime metric defined on them at the outset. Taking this generalization as a starting point, in this paper we give a prescription for constructing the field algebra of a (massless or massive) Klein-Gordon field on an arbitrary background spacetime. When spacetime is globally hyperbolic, the theory defined by our construction coincides with the ordinary Klein-Gordon field theory on aComment: 21 pages, UCSBTH-92-4

    Involutive Categories and Monoids, with a GNS-correspondence

    Get PDF
    This paper develops the basics of the theory of involutive categories and shows that such categories provide the natural setting in which to describe involutive monoids. It is shown how categories of Eilenberg-Moore algebras of involutive monads are involutive, with conjugation for modules and vector spaces as special case. The core of the so-called Gelfand-Naimark-Segal (GNS) construction is identified as a bijective correspondence between states on involutive monoids and inner products. This correspondence exists in arbritrary involutive categories

    Tensor products of subspace lattices and rank one density

    Full text link
    We show that, if MM is a subspace lattice with the property that the rank one subspace of its operator algebra is weak* dense, LL is a commutative subspace lattice and PP is the lattice of all projections on a separable infinite dimensional Hilbert space, then the lattice LMPL\otimes M\otimes P is reflexive. If MM is moreover an atomic Boolean subspace lattice while LL is any subspace lattice, we provide a concrete lattice theoretic description of LML\otimes M in terms of projection valued functions defined on the set of atoms of MM. As a consequence, we show that the Lattice Tensor Product Formula holds for \Alg M and any other reflexive operator algebra and give several further corollaries of these results.Comment: 15 page

    Applications of Hilbert Module Approach to Multivariable Operator Theory

    Full text link
    A commuting nn-tuple (T1,,Tn)(T_1, \ldots, T_n) of bounded linear operators on a Hilbert space \clh associate a Hilbert module H\mathcal{H} over C[z1,,zn]\mathbb{C}[z_1, \ldots, z_n] in the following sense: C[z1,,zn]×HH,(p,h)p(T1,,Tn)h,\mathbb{C}[z_1, \ldots, z_n] \times \mathcal{H} \rightarrow \mathcal{H}, \quad \quad (p, h) \mapsto p(T_1, \ldots, T_n)h,where pC[z1,,zn]p \in \mathbb{C}[z_1, \ldots, z_n] and hHh \in \mathcal{H}. A companion survey provides an introduction to the theory of Hilbert modules and some (Hilbert) module point of view to multivariable operator theory. The purpose of this survey is to emphasize algebraic and geometric aspects of Hilbert module approach to operator theory and to survey several applications of the theory of Hilbert modules in multivariable operator theory. The topics which are studied include: generalized canonical models and Cowen-Douglas class, dilations and factorization of reproducing kernel Hilbert spaces, a class of simple submodules and quotient modules of the Hardy modules over polydisc, commutant lifting theorem, similarity and free Hilbert modules, left invertible multipliers, inner resolutions, essentially normal Hilbert modules, localizations of free resolutions and rigidity phenomenon. This article is a companion paper to "An Introduction to Hilbert Module Approach to Multivariable Operator Theory".Comment: 46 pages. This is a companion paper to arXiv:1308.6103. To appear in Handbook of Operator Theory, Springe

    A Way Out of the Quantum Trap

    Get PDF
    We review Event Enhanced Quantum Theory (EEQT). In Section 1 we address the question "Is Quantum Theory the Last Word". In particular we respond to some of recent challenging staments of H.P. Stapp. We also discuss a possible future of the quantum paradigm - see also Section 5. In Section 2 we give a short sketch of EEQT. Examples are given in Section 3. Section 3.3 discusses a completely new phenomenon - chaos and fractal-like phenomena caused by a simultaneous "measurement" of several non-commuting observables (we include picture of Barnsley's IFS on unit sphere of a Hilbert space). In Section 4 we answer "Frequently Asked Questions" concerning EEQT.Comment: Replacement. Corrected affiliation. Latex, one .jpg figure. To appear in Proc. Conf. Relativistic Quantum Measurements, Napoli 1998, Ed. F. Petruccion
    corecore