251 research outputs found
The matricial relaxation of a linear matrix inequality
Given linear matrix inequalities (LMIs) L_1 and L_2, it is natural to ask:
(Q1) when does one dominate the other, that is, does L_1(X) PsD imply L_2(X)
PsD? (Q2) when do they have the same solution set? Such questions can be
NP-hard. This paper describes a natural relaxation of an LMI, based on
substituting matrices for the variables x_j. With this relaxation, the
domination questions (Q1) and (Q2) have elegant answers, indeed reduce to
constructible semidefinite programs. Assume there is an X such that L_1(X) and
L_2(X) are both PD, and suppose the positivity domain of L_1 is bounded. For
our "matrix variable" relaxation a positive answer to (Q1) is equivalent to the
existence of matrices V_j such that L_2(x)=V_1^* L_1(x) V_1 + ... + V_k^*
L_1(x) V_k. As for (Q2) we show that, up to redundancy, L_1 and L_2 are
unitarily equivalent.
Such algebraic certificates are typically called Positivstellensaetze and the
above are examples of such for linear polynomials. The paper goes on to derive
a cleaner and more powerful Putinar-type Positivstellensatz for polynomials
positive on a bounded set of the form {X | L(X) PsD}.
An observation at the core of the paper is that the relaxed LMI domination
problem is equivalent to a classical problem. Namely, the problem of
determining if a linear map from a subspace of matrices to a matrix algebra is
"completely positive".Comment: v1: 34 pages, v2: 41 pages; supplementary material is available in
the source file, or see http://srag.fmf.uni-lj.si
Representations of C*-dynamical systems implemented by Cuntz families
Given a dynamical system (A,\al) where is a unital \ca-algebra and
\al is a (possibly non-unital) *-endomorphism of , we examine families
such that is a representation of , is a
Toeplitz-Cuntz family and a covariance relation holds. We compute a variety of
non-selfadjoint operator algebras that depend on the choice of the covariance
relation, along with the smallest \ca-algebra they generate, namely the
\ca-envelope. We then relate each occurrence of the \ca-envelope to (a full
corner of) an appropriate twisted crossed product. We provide a counterexample
to show the extent of this variety. In the context of \ca-algebras, these
results can be interpreted as analogues of Stacey's famous result, for
non-automorphic systems and .
Our study involves also the one variable generalized crossed products of
Stacey and Exel. In particular, we refine a result that appears in the
pioneering paper of Exel on (what is now known as) Exel systems.Comment: 29 pages; changes in subsection 1.2; close to publicatio
Scaling by 5 on a 1/4-Cantor Measure
Each Cantor measure (\mu) with scaling factor 1/(2n) has at least one
associated orthonormal basis of exponential functions (ONB) for L^2(\mu). In
the particular case where the scaling constant for the Cantor measure is 1/4
and two specific ONBs are selected for L^2(\mu), there is a unitary operator U
defined by mapping one ONB to the other. This paper focuses on the case in
which one ONB (\Gamma) is the original Jorgensen-Pedersen ONB for the Cantor
measure (\mu) and the other ONB is is 5\Gamma. The main theorem of the paper
states that the corresponding operator U is ergodic in the sense that only the
constant functions are fixed by U.Comment: 34 page
Operator theory and function theory in Drury-Arveson space and its quotients
The Drury-Arveson space , also known as symmetric Fock space or the
-shift space, is a Hilbert function space that has a natural -tuple of
operators acting on it, which gives it the structure of a Hilbert module. This
survey aims to introduce the Drury-Arveson space, to give a panoramic view of
the main operator theoretic and function theoretic aspects of this space, and
to describe the universal role that it plays in multivariable operator theory
and in Pick interpolation theory.Comment: Final version (to appear in Handbook of Operator Theory); 42 page
The existence problem for dynamics of dissipative systems in quantum probability
Motivated by existence problems for dissipative systems arising naturally in
lattice models from quantum statistical mechanics, we consider the following
-algebraic setting: A given hermitian dissipative mapping is
densely defined in a unital -algebra . The identity
element in is also in the domain of . Completely
dissipative maps are defined by the requirement that the induced maps,
, are dissipative on the by complex
matrices over for all . We establish the existence of different
types of maximal extensions of completely dissipative maps. If the enveloping
von Neumann algebra of is injective, we show the existence of an
extension of which is the infinitesimal generator of a quantum
dynamical semigroup of completely positive maps in the von Neumann algebra. If
is a given well-behaved *-derivation, then we show that each of the
maps and is completely dissipative.Comment: 24 pages, LaTeX/REVTeX v. 4.0, submitted to J. Math. Phys.; PACS 02.,
02.10.Hh, 02.30.Tb, 03.65.-w, 05.30.-
Algebraic approach to quantum field theory on non-globally-hyperbolic spacetimes
The mathematical formalism for linear quantum field theory on curved
spacetime depends in an essential way on the assumption of global
hyperbolicity. Physically, what lie at the foundation of any formalism for
quantization in curved spacetime are the canonical commutation relations,
imposed on the field operators evaluated at a global Cauchy surface. In the
algebraic formulation of linear quantum field theory, the canonical commutation
relations are restated in terms of a well-defined symplectic structure on the
space of smooth solutions, and the local field algebra is constructed as the
Weyl algebra associated to this symplectic vector space. When spacetime is not
globally hyperbolic, e.g. when it contains naked singularities or closed
timelike curves, a global Cauchy surface does not exist, and there is no
obvious way to formulate the canonical commutation relations, hence no obvious
way to construct the field algebra. In a paper submitted elsewhere, we report
on a generalization of the algebraic framework for quantum field theory to
arbitrary topological spaces which do not necessarily have a spacetime metric
defined on them at the outset. Taking this generalization as a starting point,
in this paper we give a prescription for constructing the field algebra of a
(massless or massive) Klein-Gordon field on an arbitrary background spacetime.
When spacetime is globally hyperbolic, the theory defined by our construction
coincides with the ordinary Klein-Gordon field theory on aComment: 21 pages, UCSBTH-92-4
Involutive Categories and Monoids, with a GNS-correspondence
This paper develops the basics of the theory of involutive categories and
shows that such categories provide the natural setting in which to describe
involutive monoids. It is shown how categories of Eilenberg-Moore algebras of
involutive monads are involutive, with conjugation for modules and vector
spaces as special case. The core of the so-called Gelfand-Naimark-Segal (GNS)
construction is identified as a bijective correspondence between states on
involutive monoids and inner products. This correspondence exists in arbritrary
involutive categories
Tensor products of subspace lattices and rank one density
We show that, if is a subspace lattice with the property that the rank
one subspace of its operator algebra is weak* dense, is a commutative
subspace lattice and is the lattice of all projections on a separable
infinite dimensional Hilbert space, then the lattice is
reflexive. If is moreover an atomic Boolean subspace lattice while is
any subspace lattice, we provide a concrete lattice theoretic description of
in terms of projection valued functions defined on the set of
atoms of . As a consequence, we show that the Lattice Tensor Product Formula
holds for \Alg M and any other reflexive operator algebra and give several
further corollaries of these results.Comment: 15 page
Applications of Hilbert Module Approach to Multivariable Operator Theory
A commuting -tuple of bounded linear operators on a
Hilbert space \clh associate a Hilbert module over
in the following sense: where and
. A companion survey provides an introduction to the theory
of Hilbert modules and some (Hilbert) module point of view to multivariable
operator theory. The purpose of this survey is to emphasize algebraic and
geometric aspects of Hilbert module approach to operator theory and to survey
several applications of the theory of Hilbert modules in multivariable operator
theory. The topics which are studied include: generalized canonical models and
Cowen-Douglas class, dilations and factorization of reproducing kernel Hilbert
spaces, a class of simple submodules and quotient modules of the Hardy modules
over polydisc, commutant lifting theorem, similarity and free Hilbert modules,
left invertible multipliers, inner resolutions, essentially normal Hilbert
modules, localizations of free resolutions and rigidity phenomenon.
This article is a companion paper to "An Introduction to Hilbert Module
Approach to Multivariable Operator Theory".Comment: 46 pages. This is a companion paper to arXiv:1308.6103. To appear in
Handbook of Operator Theory, Springe
A Way Out of the Quantum Trap
We review Event Enhanced Quantum Theory (EEQT). In Section 1 we address the
question "Is Quantum Theory the Last Word". In particular we respond to some of
recent challenging staments of H.P. Stapp. We also discuss a possible future of
the quantum paradigm - see also Section 5. In Section 2 we give a short sketch
of EEQT. Examples are given in Section 3. Section 3.3 discusses a completely
new phenomenon - chaos and fractal-like phenomena caused by a simultaneous
"measurement" of several non-commuting observables (we include picture of
Barnsley's IFS on unit sphere of a Hilbert space). In Section 4 we answer
"Frequently Asked Questions" concerning EEQT.Comment: Replacement. Corrected affiliation. Latex, one .jpg figure. To appear
in Proc. Conf. Relativistic Quantum Measurements, Napoli 1998, Ed. F.
Petruccion
- …
