29 research outputs found

    Expression capable library for studies of Neisseria gonorrhoeae, version 1.0

    Get PDF
    Background The sexually transmitted disease, gonorrhea, is a serious health problem in developed as well as in developing countries, for which treatment continues to be a challenge. The recent completion of the genome sequence of the causative agent, Neisseria gonorrhoeae, opens up an entirely new set of approaches for studying this organism and the diseases it causes. Here, we describe the initial phases of the construction of an expression-capable clone set representing the protein-coding ORFs of the gonococcal genome using a recombination-based cloning system. Results The clone set thus far includes 1672 of the 2250 predicted ORFs of the N. gonorrhoeae genome, of which 1393 (83%) are sequence-validated. Included in this set are 48 of the 61 ORFs of the gonococcal genetic island of strain MS11, not present in the sequenced genome of strain FA1090. L-arabinose-inducible glutathione-S-transferase (GST)-fusions were constructed from random clones and each was shown to express a fusion protein of the predicted size following induction, demonstrating the use of the recombination cloning system. PCR amplicons of each ORF used in the cloning reactions were spotted onto glass slides to produce DNA microarrays representing 2035 genes of the gonococcal genome. Pilot experiments indicate that these arrays are suitable for the analysis of global gene expression in gonococci. Conclusion This archived set of Gateway® entry clones will facilitate high-throughput genomic and proteomic studies of gonococcal genes using a variety of expression and analysis systems. In addition, the DNA arrays produced will allow us to generate gene expression profiles of gonococci grown in a wide variety of conditions. Together, the resources produced in this work will facilitate experiments to dissect the molecular mechanisms of gonococcal pathogenesis on a global scale, and ultimately lead to the determination of the functions of unknown genes in the genome

    <i>Neisseria gonorrhoeae</i> PilA Is an FtsY Homolog

    Full text link
    ABSTRACT The pilA gene of Neisseria gonorrhoeae was initially identified in a screen for transcriptional regulators of pilE , the expression locus for pilin, the major structural component of gonococcal pili. The predicted protein sequence for PilA has significant homology to two GTPases of the mammalian signal recognition particle (SRP), SRP54 and SRα. Homologs of SRP54 and SRα were subsequently identified in bacteria (Ffh and FtsY, respectively) and appear to form an SRP-like apparatus in prokaryotes. Of the two proteins, PilA is the most similar to FtsY (47% identical and 67% similar at the amino acid level). Like FtsY, PilA is essential for viability and hydrolyzes GTP. The similarities between PilA and the bacterial FtsY led us to ask whether PilA might function as the gonococcal FtsY. In this work, we show that overproduction of PilA in Escherichia coli leads to an accumulation of pre-β-lactamase, similar to previous observations with other bacterial SRP components. Low-level expression of pilA in an ftsY conditional mutant can complement the ftsY mutation and restore normal growth to this strain under nonpermissive conditions. In addition, purified PilA can replace FtsY in an in vitro translocation assay using purified E. coli SRP components. A PilA mutant that is severely affected in its GTPase activity cannot replace FtsY in vivo or in vitro. However, overexpression of the GTPase mutant leads to the accumulation of pre-β-lactamase, suggesting that the mutant protein may interact with the SRP apparatus to affect protein maturation. Taken together, these results show that the gonococcal PilA is an FtsY homolog and that the GTPase activity is necessary for its function. </jats:p

    Two ABC Transporter Operons and the Antimicrobial Resistance Gene mtrF Are pilT Responsive in Neisseria gonorrhoeae▿

    No full text
    Retraction of type IV pili is mediated by PilT. We show that loss of pilT function leads to upregulation of mtrF (multiple transferable resistance) and two operons encoding putative ABC transporters in Neisseria gonorrhoeae MS11. This effect occurs indirectly through the transcriptional regulator FarR, which until now has been shown to regulate only farAB. l-Glutamine can reverse pilT downregulation of the ABC transporter operons and mtrF

    Journal Of Bacteriology,

    No full text
    this report, we show that PilA does not regulate transcription of a pilE-lacZ fusion in E. coli, regardless of the conditions used. We present evidence to suggest that PilA plays a role in protein maturation. We show that overproduction of PilA in E. coli causes the accumulation of a presecretory protein and that this accumulation appears to be independent of SecY. We also demonstrate that pilA can complement an ftsY conditional mutation in E. coli and restore normal growth to this strain under nonpermissive conditions and that a PilA mutant defective in GTPase activity can no longer perform this function. Finally, we show that PilA can partially replace FtsY in an in vitro translocation assay. We conclude from these data that PilA is the gonococcal Fts
    corecore