75 research outputs found
The Role of Second Generation Antiretroviral Drugs in HIV-1 Subtype B and non-B Variants Harboring Natural Polymorphisms and Drug Resistance Mutations
Cette thèse traite de la résistance du VIH-1 aux antirétroviraux, en particulier de l'activité antivirale de plusieurs inhibiteurs non nucléosidiques de la transcriptase inverse (INNTI) ainsi que des inhibiteurs de protéase (IP). Nous avons exploré l’émergence et la spécificité des voies de mutations qui confèrent la résistance contre plusieurs nouveaux INNTI (étravirine (ETR) et rilpivirine (RPV)) (chapitres 2 et 3). En outre, le profil de résistance et le potentiel antirétroviral d'un nouvel IP, PL-100, est présenté dans les chapitres 4 et 5.
Pour le premier projet, nous avons utilisé des sous-types B et non-B du VIH-1 pour sélectionner des virus résistants à ETR, et ainsi montré que ETR favorise l’émergence des mutations V90I, K101Q, E138K, V179D/E/F, Y181C, V189I, G190E, H221H/Y et M230L, et ce, en 18 semaines. Fait intéressant, E138K a été la première mutation à émerger dans la plupart des cas. Les clones viraux contenant E138K ont montré un faible niveau de résistance phénotypique à ETR (3,8 fois) et une diminution modeste de la capacité de réplication (2 fois) par rapport au virus de type sauvage. Nous avons également examiné les profils de résistance à ETR et RPV dans les virus contenant des mutations de résistance aux INNTI au début de la sélection. Dans le cas du virus de type sauvage et du virus contenant la mutation unique K103N, les premières mutations à apparaître en présence d’ETR ou de RPV ont été E138K ou E138G suivies d’autres mutations de résistance aux INNTI. À l’inverse, dans les mêmes conditions, le virus avec la mutation Y181C a évolué pour produire les mutations V179I/F ou A62V/A, mais pas E138K/G. L'ajout de mutations à la position 138 en présence de Y181C n'augmente pas les niveaux de résistance à ETR ou RPV. Nous avons également observé que la combinaison de Y181C et E138K peut conduire à un virus moins adapté par rapport au virus contenant uniquement Y181C. Sur la base de ces résultats, nous suggérons que les mutations Y181C et E138K peuvent être antagonistes.
L’analyse de la résistance au PL-100 des virus de sous-type C et CRF01_AE dans les cellules en culture est décrite dans le chapitre 4. Le PL-100 sélectionne pour des mutations de résistance utilisant deux voies distinctes, l'une avec les mutations V82A et L90M et l'autre avec T80I, suivi de l’addition des mutations M46I/L, I54M, K55R, L76F, P81S et I85V. Une accumulation d'au moins trois mutations dans le rabat protéique et dans le site actif est requise dans chaque cas pour qu’un haut niveau de résistance soit atteint, ce qui démontre que le PL-100 dispose d'une barrière génétique élevée contre le développement de la résistance. Dans le chapitre 5, nous avons évalué le potentiel du PL-100 en tant qu’inhibiteur de protéase de deuxième génération. Les virus résistants au PL-100 émergent en 8-48 semaines alors qu’aucune mutation n’apparaît avec le darunavir (DRV) sur une période de 40 semaines. La modélisation moléculaire montre que la haute barrière génétique du DRV est due à de multiples interactions avec la protéase dont des liaison hydrogènes entre les groupes di-tétrahydrofuranne (THF) et les atomes d'oxygène des acides aminés A28, D29 et D30, tandis que la liaison de PL-100 est principalement basée sur des interactions polaires et hydrophobes délocalisées à travers ses groupes diphényle. Nos données suggèrent que les contacts de liaison hydrogène et le groupe di-THF dans le DRV, ainsi que le caractère hydrophobe du PL-100, contribuent à la liaison à la protéase ainsi qu’à la haute barrière génétique contre la résistance et que la refonte de la structure de PL-100 pour inclure un groupe di-THF pourrait améliorer l’activité antivirale et le profil de résistance.This thesis focuses on HIV-1 drug resistance and on the antiviral activity of several non-nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors (PIs). We have explored the mutational pathways and resistance patterns of several new NNRTIs (etravirine (ETR) and rilpivirine (RPV)) (Chapters 2 and 3). In addition, the drug resistance profile and potential of a novel protease inhibitor (PI) PL-100 is presented in Chapters 4 and 5. In the first project, we used both B and non-B subtypes of HIV-1 to select for ETR resistance and showed that ETR selected for mutations at positions V90I, K101Q, E138K, V179D/E/F, Y181C, V189I, G190E, H221H/Y and M230L within 18 weeks of commencing drug pressure. Interestingly, E138K was the first mutation to emerge in most instances. Viral clones containing E138K displayed low-level phenotypic resistance to ETR (3.8-fold) and modestly impaired replication capacity (2-fold) compared to wild-type virus. We also examined resistance patterns to ETR and RPV in viruses containing NNRTI mutations at baseline. In wild-type (wt) viruses and viruses containing K103N alone, E138K or E138G mutations were observed in the presence of either ETR or RPV drug pressure followed by the appearance of other NNRTI resistance mutations. Alternatively, subtype B viruses containing Y181C generated V179I/F or A62V/A on exposure to ETR or RPV drug pressure, respectively, but not E138K. The addition of mutations at position 138 to Y181C did not significantly enhance levels of resistance to ETR or RPV. We also observed that the combination of Y181C and E138K may lead to a less fit virus compared to virus containing Y181C alone. Based on these findings, we suggest that Y181C may be antagonistic to E138K.
The tissue culture drug resistance analysis of PL-100 in subtype C and CRF01_AE viruses is described in Chapter 4. PL-100 selected for PI resistance mutations along either of two distinct pathways, one of which involved resistance mutations at positions V82A and L90M while the other involved a mutation at position T80I, with other mutations being observed at positions M46I/L, I54M, K55R, L76F, P81S and I85V. An accumulation of at least three mutations in the protease flap and enzyme active sites were required in each case for high-level resistance to occur, demonstrating that PL-100 has a high genetic barrier against the development of drug resistance. In Chapter 5, we evaluated the potential of PL-100 as a second generation HIV-1 protease inhibitor. PL-100 resistant variants emerged within 8-48 weeks while darunavir (DRV) did not select for resistance mutations over a period of 40 weeks. Structural modeling demonstrated that the high genetic barrier of DRV is due to numerous interactions with protease that include hydrogen-bonding to PR backbone oxygens at amino acid positions A28, D29 and D30 via di-tetrahydrofuran (THF) groups, while binding of PL-100 was predominantly based on polar interactions and delocalized hydrophobic interactions through its diphenyl groups. Our data suggest that hydrogen bonding contacts and the di-THF group in DRV, as well as the hydrophobic nature of PL-100, contribute to PI binding and a high genetic barrier for resistance and that redesigning the structure of PL-100 to include a di-THF group might improve it antiviral potency and drug resistance profile
Comparative biochemical analysis of recombinant reverse transcriptase enzymes of HIV-1 subtype B and subtype C
<p>Abstract</p> <p>Background</p> <p>HIV-1 subtype C infections account for over half of global HIV infections, yet the vast focus of HIV-1 research has been on subtype B viruses which represent less than 12% of the global pandemic. Since HIV-1 reverse transcriptase (RT) is a major target of antiviral therapy, and since differential drug resistance pathways have been observed among different HIV subtypes, it is important to study and compare the enzymatic activities of HIV-1 RT derived from each of subtypes B and C as well as to determine the susceptibilities of these enzymes to various RT inhibitors in biochemical assays.</p> <p>Methods</p> <p>Recombinant subtype B and C HIV-1 RTs in heterodimeric form were purified from <it>Escherichia coli </it>and enzyme activities were compared in cell-free assays. The efficiency of (-) ssDNA synthesis was measured using gel-based assays with HIV-1 PBS RNA template and tRNA<sub>3</sub><sup>Lys </sup>as primer. Processivity was assayed under single-cycle conditions using both homopolymeric and heteropolymeric RNA templates. Intrinsic RNase H activity was compared using 5'-end labeled RNA template annealed to 3'-end recessed DNA primer in a time course study in the presence and absence of a heparin trap. A mis-incorporation assay was used to assess the fidelity of the two RT enzymes. Drug susceptibility assays were performed both in cell-free assays using recombinant enzymes and in cell culture phenotyping assays.</p> <p>Results</p> <p>The comparative biochemical analyses of recombinant subtype B and subtype C HIV-1 reverse transcriptase indicate that the two enzymes are very similar biochemically in efficiency of tRNA-primed (-) ssDNA synthesis, processivity, fidelity and RNase H activity, and that both enzymes show similar susceptibilities to commonly used NRTIs and NNRTIs. Cell culture phenotyping assays confirmed these results.</p> <p>Conclusions</p> <p>Overall enzyme activity and drug susceptibility of HIV-1 subtype C RT are comparable to those of subtype B RT. The use of RT inhibitors (RTIs) against these two HIV-1 enzymes should have comparable effects.</p
Are subtype differences important in HIV drug resistance?
The diversity of human immunodeficiency virus type 1 (HIV-1) has given rise to multiple subtypes and recombinant strains. The majority of research into antiretroviral agents and drug resistance has been performed on subtype B viruses, yet non-subtype B strains are responsible for 90% of global infections. Although it seems that combination antiretroviral regimens are effective against all HIV-1 subtypes, there is emerging evidence of subtype differences in drug resistance, relevant to antiretroviral strategies in different parts of the world. For this purpose, extensive sampling of HIV genetic diversity, curation and analyses are required to inform antiretroviral strategies in different parts of the world
The Role of Second Generation Antiretroviral Drugs in HIV-1 Subtype B and non-B Variants Harboring Natural Polymorphisms and Drug Resistance Mutations
Cette thèse traite de la résistance du VIH-1 aux antirétroviraux, en particulier de l'activité antivirale de plusieurs inhibiteurs non nucléosidiques de la transcriptase inverse (INNTI) ainsi que des inhibiteurs de protéase (IP). Nous avons exploré l’émergence et la spécificité des voies de mutations qui confèrent la résistance contre plusieurs nouveaux INNTI (étravirine (ETR) et rilpivirine (RPV)) (chapitres 2 et 3). En outre, le profil de résistance et le potentiel antirétroviral d'un nouvel IP, PL-100, est présenté dans les chapitres 4 et 5.
Pour le premier projet, nous avons utilisé des sous-types B et non-B du VIH-1 pour sélectionner des virus résistants à ETR, et ainsi montré que ETR favorise l’émergence des mutations V90I, K101Q, E138K, V179D/E/F, Y181C, V189I, G190E, H221H/Y et M230L, et ce, en 18 semaines. Fait intéressant, E138K a été la première mutation à émerger dans la plupart des cas. Les clones viraux contenant E138K ont montré un faible niveau de résistance phénotypique à ETR (3,8 fois) et une diminution modeste de la capacité de réplication (2 fois) par rapport au virus de type sauvage. Nous avons également examiné les profils de résistance à ETR et RPV dans les virus contenant des mutations de résistance aux INNTI au début de la sélection. Dans le cas du virus de type sauvage et du virus contenant la mutation unique K103N, les premières mutations à apparaître en présence d’ETR ou de RPV ont été E138K ou E138G suivies d’autres mutations de résistance aux INNTI. À l’inverse, dans les mêmes conditions, le virus avec la mutation Y181C a évolué pour produire les mutations V179I/F ou A62V/A, mais pas E138K/G. L'ajout de mutations à la position 138 en présence de Y181C n'augmente pas les niveaux de résistance à ETR ou RPV. Nous avons également observé que la combinaison de Y181C et E138K peut conduire à un virus moins adapté par rapport au virus contenant uniquement Y181C. Sur la base de ces résultats, nous suggérons que les mutations Y181C et E138K peuvent être antagonistes.
L’analyse de la résistance au PL-100 des virus de sous-type C et CRF01_AE dans les cellules en culture est décrite dans le chapitre 4. Le PL-100 sélectionne pour des mutations de résistance utilisant deux voies distinctes, l'une avec les mutations V82A et L90M et l'autre avec T80I, suivi de l’addition des mutations M46I/L, I54M, K55R, L76F, P81S et I85V. Une accumulation d'au moins trois mutations dans le rabat protéique et dans le site actif est requise dans chaque cas pour qu’un haut niveau de résistance soit atteint, ce qui démontre que le PL-100 dispose d'une barrière génétique élevée contre le développement de la résistance. Dans le chapitre 5, nous avons évalué le potentiel du PL-100 en tant qu’inhibiteur de protéase de deuxième génération. Les virus résistants au PL-100 émergent en 8-48 semaines alors qu’aucune mutation n’apparaît avec le darunavir (DRV) sur une période de 40 semaines. La modélisation moléculaire montre que la haute barrière génétique du DRV est due à de multiples interactions avec la protéase dont des liaison hydrogènes entre les groupes di-tétrahydrofuranne (THF) et les atomes d'oxygène des acides aminés A28, D29 et D30, tandis que la liaison de PL-100 est principalement basée sur des interactions polaires et hydrophobes délocalisées à travers ses groupes diphényle. Nos données suggèrent que les contacts de liaison hydrogène et le groupe di-THF dans le DRV, ainsi que le caractère hydrophobe du PL-100, contribuent à la liaison à la protéase ainsi qu’à la haute barrière génétique contre la résistance et que la refonte de la structure de PL-100 pour inclure un groupe di-THF pourrait améliorer l’activité antivirale et le profil de résistance.This thesis focuses on HIV-1 drug resistance and on the antiviral activity of several non-nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors (PIs). We have explored the mutational pathways and resistance patterns of several new NNRTIs (etravirine (ETR) and rilpivirine (RPV)) (Chapters 2 and 3). In addition, the drug resistance profile and potential of a novel protease inhibitor (PI) PL-100 is presented in Chapters 4 and 5. In the first project, we used both B and non-B subtypes of HIV-1 to select for ETR resistance and showed that ETR selected for mutations at positions V90I, K101Q, E138K, V179D/E/F, Y181C, V189I, G190E, H221H/Y and M230L within 18 weeks of commencing drug pressure. Interestingly, E138K was the first mutation to emerge in most instances. Viral clones containing E138K displayed low-level phenotypic resistance to ETR (3.8-fold) and modestly impaired replication capacity (2-fold) compared to wild-type virus. We also examined resistance patterns to ETR and RPV in viruses containing NNRTI mutations at baseline. In wild-type (wt) viruses and viruses containing K103N alone, E138K or E138G mutations were observed in the presence of either ETR or RPV drug pressure followed by the appearance of other NNRTI resistance mutations. Alternatively, subtype B viruses containing Y181C generated V179I/F or A62V/A on exposure to ETR or RPV drug pressure, respectively, but not E138K. The addition of mutations at position 138 to Y181C did not significantly enhance levels of resistance to ETR or RPV. We also observed that the combination of Y181C and E138K may lead to a less fit virus compared to virus containing Y181C alone. Based on these findings, we suggest that Y181C may be antagonistic to E138K.
The tissue culture drug resistance analysis of PL-100 in subtype C and CRF01_AE viruses is described in Chapter 4. PL-100 selected for PI resistance mutations along either of two distinct pathways, one of which involved resistance mutations at positions V82A and L90M while the other involved a mutation at position T80I, with other mutations being observed at positions M46I/L, I54M, K55R, L76F, P81S and I85V. An accumulation of at least three mutations in the protease flap and enzyme active sites were required in each case for high-level resistance to occur, demonstrating that PL-100 has a high genetic barrier against the development of drug resistance. In Chapter 5, we evaluated the potential of PL-100 as a second generation HIV-1 protease inhibitor. PL-100 resistant variants emerged within 8-48 weeks while darunavir (DRV) did not select for resistance mutations over a period of 40 weeks. Structural modeling demonstrated that the high genetic barrier of DRV is due to numerous interactions with protease that include hydrogen-bonding to PR backbone oxygens at amino acid positions A28, D29 and D30 via di-tetrahydrofuran (THF) groups, while binding of PL-100 was predominantly based on polar interactions and delocalized hydrophobic interactions through its diphenyl groups. Our data suggest that hydrogen bonding contacts and the di-THF group in DRV, as well as the hydrophobic nature of PL-100, contribute to PI binding and a high genetic barrier for resistance and that redesigning the structure of PL-100 to include a di-THF group might improve it antiviral potency and drug resistance profile.Cette thèse traite de la résistance du VIH-1 aux antirétroviraux, en particulier de l'activité antivirale de plusieurs inhibiteurs non nucléosidiques de la transcriptase inverse (INNTI) ainsi que des inhibiteurs de protéase (IP). Nous avons exploré l’émergence et la spécificité des voies de mutations qui confèrent la résistance contre plusieurs nouveaux INNTI (étravirine (ETR) et rilpivirine (RPV)) (chapitres 2 et 3). En outre, le profil de résistance et le potentiel antirétroviral d'un nouvel IP, PL-100, est présenté dans les chapitres 4 et 5.
Pour le premier projet, nous avons utilisé des sous-types B et non-B du VIH-1 pour sélectionner des virus résistants à ETR, et ainsi montré que ETR favorise l’émergence des mutations V90I, K101Q, E138K, V179D/E/F, Y181C, V189I, G190E, H221H/Y et M230L, et ce, en 18 semaines. Fait intéressant, E138K a été la première mutation à émerger dans la plupart des cas. Les clones viraux contenant E138K ont montré un faible niveau de résistance phénotypique à ETR (3,8 fois) et une diminution modeste de la capacité de réplication (2 fois) par rapport au virus de type sauvage. Nous avons également examiné les profils de résistance à ETR et RPV dans les virus contenant des mutations de résistance aux INNTI au début de la sélection. Dans le cas du virus de type sauvage et du virus contenant la mutation unique K103N, les premières mutations à apparaître en présence d’ETR ou de RPV ont été E138K ou E138G suivies d’autres mutations de résistance aux INNTI. À l’inverse, dans les mêmes conditions, le virus avec la mutation Y181C a évolué pour produire les mutations V179I/F ou A62V/A, mais pas E138K/G. L'ajout de mutations à la position 138 en présence de Y181C n'augmente pas les niveaux de résistance à ETR ou RPV. Nous avons également observé que la combinaison de Y181C et E138K peut conduire à un virus moins adapté par rapport au virus contenant uniquement Y181C. Sur la base de ces résultats, nous suggérons que les mutations Y181C et E138K peuvent être antagonistes.
L’analyse de la résistance au PL-100 des virus de sous-type C et CRF01_AE dans les cellules en culture est décrite dans le chapitre 4. Le PL-100 sélectionne pour des mutations de résistance utilisant deux voies distinctes, l'une avec les mutations V82A et L90M et l'autre avec T80I, suivi de l’addition des mutations M46I/L, I54M, K55R, L76F, P81S et I85V. Une accumulation d'au moins trois mutations dans le rabat protéique et dans le site actif est requise dans chaque cas pour qu’un haut niveau de résistance soit atteint, ce qui démontre que le PL-100 dispose d'une barrière génétique élevée contre le développement de la résistance. Dans le chapitre 5, nous avons évalué le potentiel du PL-100 en tant qu’inhibiteur de protéase de deuxième génération. Les virus résistants au PL-100 émergent en 8-48 semaines alors qu’aucune mutation n’apparaît avec le darunavir (DRV) sur une période de 40 semaines. La modélisation moléculaire montre que la haute barrière génétique du DRV est due à de multiples interactions avec la protéase dont des liaison hydrogènes entre les groupes di-tétrahydrofuranne (THF) et les atomes d'oxygène des acides aminés A28, D29 et D30, tandis que la liaison de PL-100 est principalement basée sur des interactions polaires et hydrophobes délocalisées à travers ses groupes diphényle. Nos données suggèrent que les contacts de liaison hydrogène et le groupe di-THF dans le DRV, ainsi que le caractère hydrophobe du PL-100, contribuent à la liaison à la protéase ainsi qu’à la haute barrière génétique contre la résistance et que la refonte de la structure de PL-100 pour inclure un groupe di-THF pourrait améliorer l’activité antivirale et le profil de résistance.This thesis focuses on HIV-1 drug resistance and on the antiviral activity of several non-nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors (PIs). We have explored the mutational pathways and resistance patterns of several new NNRTIs (etravirine (ETR) and rilpivirine (RPV)) (Chapters 2 and 3). In addition, the drug resistance profile and potential of a novel protease inhibitor (PI) PL-100 is presented in Chapters 4 and 5. In the first project, we used both B and non-B subtypes of HIV-1 to select for ETR resistance and showed that ETR selected for mutations at positions V90I, K101Q, E138K, V179D/E/F, Y181C, V189I, G190E, H221H/Y and M230L within 18 weeks of commencing drug pressure. Interestingly, E138K was the first mutation to emerge in most instances. Viral clones containing E138K displayed low-level phenotypic resistance to ETR (3.8-fold) and modestly impaired replication capacity (2-fold) compared to wild-type virus. We also examined resistance patterns to ETR and RPV in viruses containing NNRTI mutations at baseline. In wild-type (wt) viruses and viruses containing K103N alone, E138K or E138G mutations were observed in the presence of either ETR or RPV drug pressure followed by the appearance of other NNRTI resistance mutations. Alternatively, subtype B viruses containing Y181C generated V179I/F or A62V/A on exposure to ETR or RPV drug pressure, respectively, but not E138K. The addition of mutations at position 138 to Y181C did not significantly enhance levels of resistance to ETR or RPV. We also observed that the combination of Y181C and E138K may lead to a less fit virus compared to virus containing Y181C alone. Based on these findings, we suggest that Y181C may be antagonistic to E138K.
The tissue culture drug resistance analysis of PL-100 in subtype C and CRF01_AE viruses is described in Chapter 4. PL-100 selected for PI resistance mutations along either of two distinct pathways, one of which involved resistance mutations at positions V82A and L90M while the other involved a mutation at position T80I, with other mutations being observed at positions M46I/L, I54M, K55R, L76F, P81S and I85V. An accumulation of at least three mutations in the protease flap and enzyme active sites were required in each case for high-level resistance to occur, demonstrating that PL-100 has a high genetic barrier against the development of drug resistance. In Chapter 5, we evaluated the potential of PL-100 as a second generation HIV-1 protease inhibitor. PL-100 resistant variants emerged within 8-48 weeks while darunavir (DRV) did not select for resistance mutations over a period of 40 weeks. Structural modeling demonstrated that the high genetic barrier of DRV is due to numerous interactions with protease that include hydrogen-bonding to PR backbone oxygens at amino acid positions A28, D29 and D30 via di-tetrahydrofuran (THF) groups, while binding of PL-100 was predominantly based on polar interactions and delocalized hydrophobic interactions through its diphenyl groups. Our data suggest that hydrogen bonding contacts and the di-THF group in DRV, as well as the hydrophobic nature of PL-100, contribute to PI binding and a high genetic barrier for resistance and that redesigning the structure of PL-100 to include a di-THF group might improve it antiviral potency and drug resistance profile
Decreasing trends of drug resistance and increase of non-B subtypes amongst subjects recently diagnosed as HIV-infected over the period 2004–2012 in the Veneto Region, Italy
HIV protease inhibitors disrupt astrocytic glutamate transporter function and neurobehavioral performance
OBJECTIVE: The neurotoxic actions of the HIV protease inhibitors, amprenavir (APV) and lopinavir (LPV) were investigated. DESIGN: With combination antiretroviral therapy (cART), HIV-infected persons exhibit neurocognitive impairments, raising the possibility that cART might exert adverse central nervous system (CNS) effects. We examined the effects of LPV and APV using in-vitro and in-vivo assays of CNS function. METHODS: Gene expression, cell viability and amino-acid levels were measured in human astrocytes, following exposure to APV or LPV. Neurobehavioral performance, amino-acid levels and neuropathology were examined in HIV-1 Vpr transgenic mice after treatment with APV or LPV. RESULTS: Excitatory amino-acid transporter-2 (EAAT2) expression was reduced in astrocytes treated with LPV or APV, especially LPV (P < 0.05), which was accompanied by reduced intracellular l-glutamate levels in LPV-treated cells (P < 0.05). Treatment of astrocytes with APV or LPV reduced the expression of proliferating cell nuclear antigen (PCNA) and Ki-67 (P < 0.05) although cell survival was unaffected. Exposure of LPV to astrocytes augmented glutamate-evoked transient rises in [Ca(i)] (P < 0.05). Vpr mice treated with LPV showed lower concentrations of l-glutamate, l-aspartate and l-serine in cortex compared with vehicle-treated mice (P < 0.05). Total errors in T-maze assessment were increased in LPV and APV-treated animals (P < 0.05). EAAT2 expression was reduced in the brains of protease inhibitor-treated animals, which was associated with gliosis (P < 0.05). CONCLUSION: These results indicated that contemporary protease inhibitors disrupt astrocyte functions at therapeutic concentrations with enhanced sensitivity to glutamate, which can lead to neurobehavioral impairments. ART neurotoxicity should be considered in future therapeutic regimens for HIV/AIDS
Antiviral Drug Resistance and the Need for Development of New HIV-1 Reverse Transcriptase Inhibitors
- …
