160 research outputs found
The microbiologist’s guide to membrane potential dynamics
All cellular membranes have the functionality of generating and maintaining the gradients of electrical and electrochemical potentials. Such potentials were generally thought to be an essential but homeostatic contributor to complex bacterial behaviors. Recent studies have revised this view, and we now know that bacterial membrane potential is dynamic and plays signaling roles in cell–cell interaction, adaptation to antibiotics, and sensation of cellular conditions and environments. These discoveries argue that bacterial membrane potential dynamics deserve more attention. Here, we review the recent studies revealing the signaling roles of bacterial membrane potential dynamics. We also introduce basic biophysical theories of the membrane potential to the microbiology community and discuss the needs to revise these theories for applications in bacterial electrophysiology
Interrogating metabolism as an electron flow system
Metabolism is generally considered as a neatly organised system of modular pathways, shaped by evolution under selection for optimal cellular growth. This view falls short of explaining and predicting a number of key observations about the structure and dynamics of metabolism. We highlight these limitations of a pathway-centric view on metabolism and summarise studies suggesting how these could be overcome by viewing metabolism as a thermodynamically and kinetically constrained, dynamical flow system. Such a systems-level, first-principles based view of metabolism can open up new avenues of metabolic engineering and cures for metabolic diseases and allow better insights to a myriad of physiological processes that are ultimately linked to metabolism. Towards further developing this view, we call for a closer interaction among physical and biological disciplines and an increased use of electrochemical and biophysical approaches to interrogate cellular metabolism together with the microenvironment in which it exists
Impact of spatial organization on a novel auxotrophic interaction among soil microbes
A key prerequisite to achieve a deeper understanding of microbial communities and to engineer synthetic ones is to identify the individual metabolic interactions among key species and how these interactions are affected by different environmental factors. Deciphering the physiological basis of species–species and species–environment interactions in spatially organized environments requires reductionist approaches using ecologically and functionally relevant species. To this end, we focus here on a defined system to study the metabolic interactions in a spatial context among the plant-beneficial endophytic fungus Serendipita indica, and the soil-dwelling model bacterium Bacillus subtilis. Focusing on the growth dynamics of S. indica under defined conditions, we identified an auxotrophy in this organism for thiamine, which is a key co-factor for essential reactions in the central carbon metabolism. We found that S. indica growth is restored in thiamine-free media, when co-cultured with B. subtilis. The success of this auxotrophic interaction, however, was dependent on the spatial and temporal organization of the system; the beneficial impact of B. subtilis was only visible when its inoculation was separated from that of S. indica either in time or space. These findings describe a key auxotrophic interaction in the soil among organisms that are shown to be important for plant ecosystem functioning, and point to the potential importance of spatial and temporal organization for the success of auxotrophic interactions. These points can be particularly important for engineering of minimal functional synthetic communities as plant seed treatments and for vertical farming under defined conditions
Recommended from our members
Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity
Membrane-potential dynamics mediate bacterial electrical signaling at both intra- and intercellular levels. Membrane potential is also central to cellular proliferation. It is unclear whether the cellular response to external electrical stimuli is influenced by the cellular proliferative capacity. A new strategy enabling electrical stimulation of bacteria with simultaneous monitoring of single-cell membrane- potential dynamics would allow bridging this knowledge gap and further extend electrophysiological studies into the field of microbi- ology. Here we report that an identical electrical stimulus can cause opposite polarization dynamics depending on cellular proliferation capacity. This was demonstrated using two model organisms, namely Bacillus subtilis and Escherichia coli, and by developing an apparatus enabling exogenous electrical stimulation and single-cell time-lapse microscopy. Using this bespoke apparatus, we show that a 2.5-sec- ond electrical stimulation causes hyperpolarization in unperturbed cells. Measurements of intracellular K+ and the deletion of the K+ channel suggested that the hyperpolarization response is caused by the K+ efflux through the channel. When cells are preexposed to 400 ± 8 nm wavelength light, the same electrical stimulation depolarizes cells instead of causing hyperpolarization. A mathematical model extended from the FitzHugh–Nagumo neuron model suggested that the opposite response dynamics are due to the shift in resting mem- brane potential. As predicted by the model, electrical stimulation only induced depolarization when cells are treated with antibiotics, protonophore, or alcohol. Therefore, electrically induced membrane- potential dynamics offer a reliable approach for rapid detection of proliferative bacteria and determination of their sensitivity to anti- microbial agents at the single-cell level
The Effect of Cell Death on the Stability of a Growing Biofilm
In this paper, we investigate the role of cell death in promoting pattern formation within bacterial biofilms. To do this we utilise an extension of the model proposed by Dockery and Klapper [13], and consider the effects of two distinct death rates. Equations describing the evolution of a moving biofilm interface are derived, and properties of steady state solutions are examined. In particular, a comparison of the planar behaviour of the biofilm interface in the different cases of cell death is investigated. Linear stability analysis is carried out at steady state solutions of the interface, and it is shown that, under certain conditions, instabilities may arise. Analysis determines that, while the emergence of patterns is a possibility in `deep’ biofilms, it is unlikely that pattern formation will arise in `shallow’ biofilms
Verticalization of bacterial biofilms
Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms
of rod-shaped bacteria were observed at single-cell resolution and shown to
develop from a disordered, two-dimensional layer of founder cells into a
three-dimensional structure with a vertically-aligned core. Here, we elucidate
the physical mechanism underpinning this transition using a combination of
agent-based and continuum modeling. We find that verticalization proceeds
through a series of localized mechanical instabilities on the cellular scale.
For short cells, these instabilities are primarily triggered by cell division,
whereas long cells are more likely to be peeled off the surface by nearby
vertical cells, creating an "inverse domino effect". The interplay between cell
growth and cell verticalization gives rise to an exotic mechanical state in
which the effective surface pressure becomes constant throughout the growing
core of the biofilm surface layer. This dynamical isobaricity determines the
expansion speed of a biofilm cluster and thereby governs how cells access the
third dimension. In particular, theory predicts that a longer average cell
length yields more rapidly expanding, flatter biofilms. We experimentally show
that such changes in biofilm development occur by exploiting chemicals that
modulate cell length.Comment: Main text 10 pages, 4 figures; Supplementary Information 35 pages, 15
figure
The dynamics of single-to-multi layer transition in bacterial swarms
Wet self-propelled rods at high densities can exhibit a state of mesoscale turbulence: a disordered lattice of vortices with chaotic dynamics and a characteristic length scale. Such a state is commonly studied by a two-dimensional continuum model. However, less is known about the dynamic behaviour of self-propelled rods in three- or quasi-two- dimensions, which can be found in biological systems, for example, during the formation of bacterial aggregates and biolms. In this study, we characterised the formation of multi-layered islands in a monolayer of swarming cells using the rod-shaped bacteria B. subtilis as a model system. We focused on understanding how bacteria form multiple layers and how the presence of stress aects the multiple layer formation. Following our previous study where we reported that the initiation of the multilayer formation can be accounted by the framework of motility-induced phase separation (MIPS), this study analysed how this phase separation is impacted by the presence of stress, specially under the exposure to a gradient of antibiotic. The analyses show that in the presence of an antibiotic gradient, the multi-layer formation happens by a nucleation and growth of well-defined multilayered clusters instead of by the uncontrolled emergence of the multilayer, resembling the traditional thermodynamic processes of binodal and spinodal decomposition respectively. Finally, the multilayer gives place to waves of bacteria that can travel towards high concentrations of antibiotics and that resemble travelling waves predicted by simulations of mixtures of passive and active particles
Biofilm and swarming emergent behaviours controlled through the aid of biophysical understanding and tools
Bacteria can organise themselves into communities in the forms of biofilms and swarms. Through chemical and physical interactions between cells, these communities exhibit emergent properties that individual cells alone do not have. While bacterial communities have been mainly studied in the context of biochemistry and molecular biology, recent years have seen rapid advancements in the biophysical understanding of emergent phenomena through physical interactions in biofilms and swarms. Moreover, new technologies to control bacterial emergent behaviours by physical means are emerging in synthetic biology. Such technologies are particularly promising for developing engineered living materials (ELM) and devices and controlling contamination and biofouling. In this minireview, we overview recent studies unveiling physical and mechanical cues that trigger and affect swarming and biofilm development. In particular, we focus on cell shape, motion and density as the key parameters for mechanical cell–cell interactions within a community. We then showcase recent studies that use physical stimuli for patterning bacterial communities, altering collective behaviours and preventing biofilm formation. Finally, we discuss the future potential extension of biophysical and bioengineering research on microbial communities through computational modelling and deeper investigation of mechano-electrophysiological coupling
- …
