17 research outputs found

    Comparison of 3 Methodologies for Genotyping of Small Deletion and Insertion Polymorphisms

    Full text link
    Abstract BACKGROUND The quantification of genomic chimerism is increasingly recognized for its clinical significance after transplantation. Before the measurement of chimerism, accurate genotyping of genetic polymorphisms for informative alleles that can distinguish donor DNA from recipient DNA is essential. The ease of allelic discrimination of small deletion and insertion polymorphisms (DIPs) makes DIPs attractive markers to track chimerism. Current methodologies for the genotyping of DIPs are largely based on “open-tube” approaches. “Closed-tube” approaches involving no or minimal post-PCR handling are preferred. We compared 3 distinct methodologies to determine an optimal platform for DIP genotyping. METHODS Genomic DNA from 19 normal individuals was genotyped for 6 small biallelic DIPs using high-resolution melting analysis (HRMA), probe-free droplet digital PCR (ddPCR), and microfluidic electrophoresis of PCR products. For HRMA, 3 different platforms were compared. RESULTS Our newly developed probe-free ddPCR approach allowed the genotype of each DIP to be determined by fluorescence intensity based on amplicon size. Microfluidic electrophoresis also allowed genotypes to be determined by amplicon size. HRMA assays allowed the genotype of each DIP to be determined by melting profile. Genotyping results were concordant between the 3 methodologies. HRMA was the most readily performed methodology and was robust across 3 separate HRMA-capable platforms. CONCLUSIONS We demonstrated the effectiveness of probe-free ddPCR to accurately genotype small biallelic DIPs. Nevertheless, HRMA proved to be the optimal approach for genotyping small DIPs because closed-tube approaches are preferred owing to rapid and less laborious workflows and least risk of PCR contamination. </jats:sec

    A Synthetic DNA Construct to Evaluate the Recovery Efficiency of Cell-Free DNA Extraction and Bisulfite Modification

    Full text link
    Abstract Background Despite improvements in the genetic and epigenetic analysis of cell-free DNA (cfDNA), there has been limited focus on assessing the preanalytical variables of recovery efficiency following cfDNA extraction and bisulfite modification. Quantification of recovery efficiency after these steps can facilitate quality assurance and improve reliability when comparing serial samples. Methods We developed an exogenous DNA Construct to Evaluate the Recovery Efficiency of cfDNA extraction and BISulfite modification (CEREBIS) after cfDNA extraction and/or subsequent bisulfite modification from plasma. The strategic placement of cytosine bases in the 180 bp CEREBIS enabled PCR amplification of the construct by a single primer set both after plasma DNA extraction and following subsequent bisulfite modification. Results Plasma samples derived from 8 organ transplant donors and 6 serial plasma samples derived from a liver transplant recipient were spiked with a known number of copies of CEREBIS. Recovery of CEREBIS after cfDNA extraction and bisulfite modification was quantified with high analytical accuracy by droplet digital PCR. The use of CEREBIS and quantification of its recovery was useful in identifying problematic extractions. Furthermore, its use was shown to be invaluable towards improving the reliability of the analysis of serial samples. Conclusions CEREBIS can be used as a spike-in control to address the preanalytical variable of recovery efficiency both after cfDNA extraction from plasma and following bisulfite modification. Our approach can be readily implemented and its application may have significant benefits, especially in settings where longitudinal quantification of cfDNA for disease monitoring is necessary. </jats:sec

    PDCD1 Polymorphisms May Predict Response to Anti-PD-1 Blockade in Patients With Metastatic Melanoma

    No full text
    A significant number of patients (pts) with metastatic melanoma do not respond to anti-programmed cell death 1 (PD1) therapies. Identifying predictive biomarkers therefore remains an urgent need. We retrospectively analyzed plasma DNA of pts with advanced melanoma treated with PD-1 antibodies, nivolumab or pembrolizumab, for five PD-1 genotype single nucleotide polymorphisms (SNPs): PD1.1 (rs36084323, G&amp;gt;A), PD1.3 (rs11568821, G&amp;gt;A), PD1.5 (rs2227981, C&amp;gt;T) PD1.6 (rs10204225, G&amp;gt;A) and PD1.9 (rs2227982, C&amp;gt;T). Clinico-pathological and treatment parameters were collected, and presence of SNPs correlated with response, progression free survival (PFS) and overall survival (OS). 115 patients were identified with a median follow up of 18.7 months (range 0.26 – 52.0 months). All were Caucasian; 27% BRAF V600 mutation positive. At PD-1 antibody commencement, 36% were treatment-naïve and 52% had prior ipilimumab. The overall response rate was 43%, 19% achieving a complete response. Overall median PFS was 11.0 months (95% CI 5.4 - 17.3) and median OS was 31.1 months (95% CI 23.2 - NA). Patients with the G/G genotype had more complete responses than with A/G genotype (16.5% vs. 2.6% respectively) and the G allele of PD1.3 rs11568821 was significantly associated with a longer median PFS than the AG allele, 14.1 vs. 7.0 months compared to the A allele (p=0.04; 95% CI 0.14 – 0.94). No significant association between the remaining SNPs and responses, PFS or OS were observed. Despite limitations in sample size, this is the first study to demonstrate an association of a germline PD-1 polymorphism and PFS in response to anti-PD-1 therapy in pts with metastatic melanoma. Extrinsic factors like host germline polymorphisms should be considered with tumor intrinsic factors as predictive biomarkers for immune checkpoint regulators.</jats:p

    Acquired <i>RAD51C</i> Promoter Methylation Loss Causes PARP Inhibitor Resistance in High-Grade Serous Ovarian Carcinoma

    Full text link
    Abstract In high-grade serous ovarian carcinoma (HGSC), deleterious mutations in DNA repair gene RAD51C are established drivers of defective homologous recombination and are emerging biomarkers of PARP inhibitor (PARPi) sensitivity. RAD51C promoter methylation (meRAD51C) is detected at similar frequencies to mutations, yet its effects on PARPi responses remain unresolved. In this study, three HGSC patient-derived xenograft (PDX) models with methylation at most or all examined CpG sites in the RAD51C promoter show responses to PARPi. Both complete and heterogeneous methylation patterns were associated with RAD51C gene silencing and homologous recombination deficiency (HRD). PDX models lost meRAD51C following treatment with PARPi rucaparib or niraparib, where a single unmethylated copy of RAD51C was sufficient to drive PARPi resistance. Genomic copy number profiling of one of the PDX models using SNP arrays revealed that this resistance was acquired independently in two genetically distinct lineages. In a cohort of 12 patients with RAD51C-methylated HGSC, various patterns of meRAD51C were associated with genomic “scarring,” indicative of HRD history, but exhibited no clear correlations with clinical outcome. Differences in methylation stability under treatment pressure were also observed between patients, where one HGSC was found to maintain meRAD51C after six lines of therapy (four platinum-based), whereas another HGSC sample was found to have heterozygous meRAD51C and elevated RAD51C gene expression (relative to homozygous meRAD51C controls) after only neoadjuvant chemotherapy. As meRAD51C loss in a single gene copy was sufficient to cause PARPi resistance in PDX, methylation zygosity should be carefully assessed in previously treated patients when considering PARPi therapy. Significance: Homozygous RAD51C methylation is a positive predictive biomarker for sensitivity to PARP inhibitors, whereas a single unmethylated gene copy is sufficient to confer resistance. </jats:sec

    Acquired <i>RAD51C</i> promoter methylation loss causes PARP inhibitor resistance in high grade serous ovarian carcinoma

    Full text link
    ABSTRACTWhile loss of BRCA1 promoter methylation has been shown to cause PARP inhibitor (PARPi) resistance in high-grade serous ovarian carcinoma (HGSC), the impacts of RAD51C methylation (meRAD51C) remain unresolved. In this study, three PARPi-responsive HGSC patient-derived xenografts (PDX) with RAD51C gene silencing and homologous recombination deficiency were found to have either homogeneous or heterogeneous patterns of meRAD51C. PDX could lose meRAD51C following PARPi treatment (rucaparib/niraparib), where a single unmethylated RAD51C copy was sufficient to drive PARPi-resistance. Genomic profiling revealed this resistance was acquired independently in two distinct PDX lineages. Furthermore, we describe a patient sample where 1/3 RAD51C gene copies lost methylation following neoadjuvant chemotherapy. We show meRAD51C is a positive predictive biomarker for PARPi response and should be screened for routinely in patients. However, methylation loss in a single gene copy is sufficient to cause PARPi resistance and should be carefully assessed in previously treated patients considering PARPi therapy.</jats:p
    corecore