24 research outputs found

    Towards Recommendations for Value Sensitive Sustainable Consumption

    Get PDF
    Excessive consumption can strain natural resources, harm the environment, and widen societal gaps. While adopting a more sustainable lifestyle means making significant changes and potentially compromising personal desires, balancing sustainability with personal values poses a complex challenge. This article delves into designing recommender systems using neural networks and genetic algorithms, aiming to assist consumers in shopping sustainably without disregarding their individual preferences. We approach the search for good recommendations as a problem involving multiple objectives, representing diverse sustainability goals and personal values. While using a synthetic historical dataset based on real-world sources, our evaluations reveal substantial environmental benefits without demanding drastic personal sacrifices, even if consumers accept only a fraction of the recommendations

    Multi-Objective Optimization for Value-Sensitive and Sustainable Basket Recommendations

    Full text link
    Sustainable consumption aims to minimize the environmental and societal impact of the use of services and products. Over-consumption of services and products leads to potential natural resource exhaustion and societal inequalities as access to goods and services becomes more challenging. In everyday life, a person can simply achieve more sustainable purchases by drastically changing their lifestyle choices and potentially going against their personal values or wishes. Conversely, achieving sustainable consumption while accounting for personal values is a more complex task as potential trade-offs arise when trying to satisfy environmental and personal goals. This article focuses on value-sensitive design of recommender systems, which enable consumers to improve the sustainability of their purchases while respecting personal and societal values. Value-sensitive recommendations for sustainable consumption are formalized as a multi-objective optimization problem, where each objective represents different sustainability goals and personal values. Novel and existing multi-objective algorithms calculate solutions to this problem. The solutions are proposed as personalized sustainable basket recommendations to consumers. These recommendations are evaluated on a synthetic dataset, which comprises three established real-world datasets from relevant scientific and organizational reports. The synthetic dataset contains quantitative data on product prices, nutritional values, and environmental impact metrics, such as greenhouse gas emissions and water footprint. The recommended baskets are highly similar to consumer purchased baskets and aligned with both sustainability goals and personal values relevant to health, expenditure, and taste. Even when consumers would accept only a fraction of recommendations, a considerable reduction of environmental impact is observed.Comment: Second Draft, merged appendix to main text, stressed the importance of straight-through estimators for fractional decoupling, updated nomenclature and reference

    Near-optimal control of dynamical systems with neural ordinary differential equations

    Get PDF
    Optimal control problems naturally arise in many scientific applications where one wishes to steer a dynamical system from an initial state x0 to a desired target state x* in finite time T. Recent advances in deep learning and neural network–based optimization have contributed to the development of numerical methods that can help solve control problems involving high-dimensional dynamical systems. In particular, the framework of neural ordinary differential equations (neural ODEs) provides an efficient means to iteratively approximate continuous-time control functions associated with analytically intractable and computationally demanding control tasks. Although neural ODE controllers have shown great potential in solving complex control problems, the understanding of the effects of hyperparameters such as network structure and optimizers on learning performance is still very limited. Our work aims at addressing some of these knowledge gaps to conduct efficient hyperparameter optimization. To this end, we first analyze how truncated and non-truncated backpropagation through time affect both runtime performance and the ability of neural networks to learn optimal control functions. Using analytical and numerical methods, we then study the role of parameter initializations, optimizers, and neural-network architecture. Finally, we connect our results to the ability of neural ODE controllers to implicitly regularize control energy

    Near-optimal control of dynamical systems with neural ordinary differential equations

    Full text link
    Optimal control problems naturally arise in many scientific applications where one wishes to steer a dynamical system from a certain initial state x0\mathbf{x}_0 to a desired target state x\mathbf{x}^* in finite time TT. Recent advances in deep learning and neural network-based optimization have contributed to the development of methods that can help solve control problems involving high-dimensional dynamical systems. In particular, the framework of neural ordinary differential equations (neural ODEs) provides an efficient means to iteratively approximate continuous time control functions associated with analytically intractable and computationally demanding control tasks. Although neural ODE controllers have shown great potential in solving complex control problems, the understanding of the effects of hyperparameters such as network structure and optimizers on learning performance is still very limited. Our work aims at addressing some of these knowledge gaps to conduct efficient hyperparameter optimization. To this end, we first analyze how truncated and non-truncated backpropagation through time affect runtime performance and the ability of neural networks to learn optimal control functions. Using analytical and numerical methods, we then study the role of parameter initializations, optimizers, and neural-network architecture. Finally, we connect our results to the ability of neural ODE controllers to implicitly regularize control energy.Comment: 27 pages, 17 figure

    Control of Dual-Sourcing Inventory Systems Using Recurrent Neural Networks

    Get PDF
    A key challenge in inventory management is to identify policies that optimally replenish inventory from multiple suppliers. To solve such optimization problems, inventory managers need to decide what quantities to order from each supplier given the net inventory and outstanding orders so that the expected backlogging, holding, and sourcing costs are jointly minimized. Inventory management problems have been studied extensively for more than 60 years, and yet even basic dual-sourcing problems, in which orders from an expensive supplier arrive faster than orders from a regular supplier, remain intractable in their general form. In addition, there is an emerging need to develop proactive, scalable optimization algorithms that can adjust their recommendations to dynamic demand shifts in a timely fashion. In this work, we approach dual sourcing from a neural network–based optimization lens and incorporate information on inventory dynamics and its replenishment (i.e., control) policies into the design of recurrent neural networks. We show that the proposed neural network controllers (NNCs) are able to learn near-optimal policies of commonly used instances within a few minutes of CPU time on a regular personal computer. To demonstrate the versatility of NNCs, we also show that they can control inventory dynamics with empirical, nonstationary demand distributions that are challenging to tackle effectively using alternative, state-of-the-art approaches. Our work shows that high-quality solutions of complex inventory management problems with nonstationary demand can be obtained with deep neural network optimization approaches that directly account for inventory dynamics in their optimization process. As such, our research opens up new ways of efficiently managing complex, high-dimensional inventory dynamics

    Optimization of privacy-utility trade-offs under informational self-determination

    No full text
    The pervasiveness of Internet of Things results in vast volumes of personal data generated by smart devices of users (data producers) such as smart phones, wearables and other embedded sensors. It is a common requirement, especially for Big Data analytics systems, to transfer these large in scale and distributed data to centralized computational systems for analysis. Nevertheless, third parties that run and manage these systems (data consumers) do not always guarantee users’ privacy. Their primary interest is to improve utility that is usually a metric related to the performance, costs and the quality of service. There are several techniques that mask user-generated data to ensure privacy, e.g. differential privacy. Setting up a process for masking data, referred to in this paper as a ‘privacy setting’, decreases on the one hand the utility of data analytics, while, on the other hand, increases privacy. This paper studies parameterizations of privacy settings that regulate the trade-off between maximum utility, minimum privacy and minimum utility, maximum privacy, where utility refers to the accuracy in the estimations of aggregation functions. Privacy settings can be universally applied as system-wide parameterizations and policies (homogeneous data sharing). Nonetheless they can also be applied autonomously by each user or decided under the influence of (monetary) incentives (heterogeneous data sharing). This latter diversity in data sharing by informational self-determination plays a key role on the privacy-utility trajectories as shown in this paper both theoretically and empirically. A generic and novel computational framework is introduced for measuring privacy-utility trade-offs and their Pareto optimization. The framework computes a broad spectrum of such trade-offs that form privacy-utility trajectories under homogeneous and heterogeneous data sharing. The practical use of the framework is experimentally evaluated using real-world data from a Smart Grid pilot project in which energy consumers protect their privacy by regulating the quality of the shared power demand data, while utility companies make accurate estimations of the aggregate load in the network to manage the power grid. Over 20,000 differential privacy settings are applied to shape the computational trajectories that in turn provide a vast potential for data consumers and producers to participate in viable participatory data sharing systems

    Privacy-enhancing Aggregation of Internet of Things Data via Sensors Grouping

    Full text link
    Big data collection practices using Internet of Things (IoT) pervasive technologies are often privacy-intrusive and result in surveillance, profiling, and discriminatory actions over citizens that in turn undermine the participation of citizens to the development of sustainable smart cities. Nevertheless, real-time data analytics and aggregate information from IoT devices open up tremendous opportunities for managing smart city infrastructures. The privacy-enhancing aggregation of distributed sensor data, such as residential energy consumption or traffic information, is the research focus of this paper. Citizens have the option to choose their privacy level by reducing the quality of the shared data at a cost of a lower accuracy in data analytics services. A baseline scenario is considered in which IoT sensor data are shared directly with an untrustworthy central aggregator. A grouping mechanism is introduced that improves privacy by sharing data aggregated first at a group level compared as opposed to sharing data directly to the central aggregator. Group-level aggregation obfuscates sensor data of individuals, in a similar fashion as differential privacy and homomorphic encryption schemes, thus inference of privacy-sensitive information from single sensors becomes computationally harder compared to the baseline scenario. The proposed system is evaluated using real-world data from two smart city pilot projects. Privacy under grouping increases, while preserving the accuracy of the baseline scenario. Intra-group influences of privacy by one group member on the other ones are measured and fairness on privacy is found to be maximized between group members with similar privacy choices. Several grouping strategies are compared. Grouping by proximity of privacy choices provides the highest privacy gains. The implications of the strategy on the design of incentives mechanisms are discussed

    Decentralized Collective Learning for Self-managed Sharing Economies

    Get PDF
    The Internet of Things equips citizens with a phenomenal new means for online participation in sharing economies. When agents self-determine options from which they choose, for instance, their resource consumption and production, while these choices have a collective systemwide impact, optimal decision-making turns into a combinatorial optimization problem known as NP-hard. In such challenging computational problems, centrally managed (deep) learning systems often require personal data with implications on privacy and citizens’ autonomy. This article envisions an alternative unsupervised and decentralized collective learning approach that preserves privacy, autonomy, and participation of multi-agent systems self-organized into a hierarchical tree structure. Remote interactions orchestrate a highly efficient process for decentralized collective learning. This disruptive concept is realized by I-EPOS, the Iterative Economic Planning and Optimized Selections, accompanied by a paradigmatic software artifact. Strikingly, I-EPOS outperforms related algorithms that involve non-local brute-force operations or exchange full information. This article contributes new experimental findings about the influence of network topology and planning on learning efficiency as well as findings on techno-socio-economic tradeoffs and global optimality. Experimental evaluation with real-world data from energy and bike sharing pilots demonstrates the grand potential of collective learning to design ethically and socially responsible participatory sharing economies

    Neural Ordinary Differential Equation Control of Dynamics on Graphs

    Full text link
    We study the ability of neural networks to calculate feedback control signals that steer trajectories of continuous time non-linear dynamical systems on graphs, which we represent with neural ordinary differential equations (neural ODEs). To do so, we present a neural-ODE control (NODEC) framework and find that it can learn feedback control signals that drive graph dynamical systems into desired target states. While we use loss functions that do not constrain the control energy, our results show, in accordance with related work, that NODEC produces low energy control signals. Finally, we evaluate the performance and versatility of NODEC against well-known feedback controllers and deep reinforcement learning. We use NODEC to generate feedback controls for systems of more than one thousand coupled, non-linear ODEs that represent epidemic processes and coupled oscillators.Comment: Fifth version improves and clears notatio

    Implicit energy regularization of neural ordinary-differential-equation control

    Full text link
    Although optimal control problems of dynamical systems can be formulated within the framework of variational calculus, their solution for complex systems is often analytically and computationally intractable. In this Letter we present a versatile neural ordinary-differential-equation control (NODEC) framework with implicit energy regularization and use it to obtain neural-network-generated control signals that can steer dynamical systems towards a desired target state within a predefined amount of time. We demonstrate the ability of NODEC to learn control signals that closely resemble those found by corresponding optimal control frameworks in terms of control energy and deviation from the desired target state. Our results suggest that NODEC is capable to solve a wide range of control and optimization problems, including those that are analytically intractable.Comment: 5 pages, 3 figure
    corecore