314 research outputs found
Megabits secure key rate quantum key distribution
Quantum cryptography (QC) can provide unconditional secure communication
between two authorized parties based on the basic principles of quantum
mechanics. However, imperfect practical conditions limit its transmission
distance and communication speed. Here we implemented the differential phase
shift (DPS) quantum key distribution (QKD) with up-conversion assisted hybrid
photon detector (HPD) and achieved 1.3 M bits per second secure key rate over a
10-km fiber, which is tolerant against the photon number splitting (PNS)
attack, general collective attacks on individual photons, and any other known
sequential unambiguous state discrimination (USD) attacks.Comment: 14 pages, 4 figure
Multistep Parametric Processes in Nonlinear Optics
We present a comprehensive overview of different types of parametric
interactions in nonlinear optics which are associated with simultaneous
phase-matching of several optical processes in quadratic nonlinear media, the
so-called multistep parametric interactions. We discuss a number of
possibilities of double and multiple phase-matching in engineered structures
with the sign-varying second-order nonlinear susceptibility, including (i)
uniform and non-uniform quasi-phase-matched (QPM) periodic optical
superlattices, (ii) phase-reversed and periodically chirped QPM structures, and
(iii) uniform QPM structures in non-collinear geometry, including recently
fabricated two-dimensional nonlinear quadratic photonic crystals. We also
summarize the most important experimental results on the multi-frequency
generation due to multistep parametric processes, and overview the physics and
basic properties of multi-color optical parametric solitons generated by these
parametric interactions.Comment: To be published in Progress in Optic
Gradient Optics of subwavelength nanofilms
Propagation and tunneling of light through subwavelength photonic barriers,
formed by dielectric layers with continuous spatial variations of dielectric
susceptibility across the film are considered. Effects of giant
heterogeneity-induced non-local dispersion, both normal and anomalous, are
examined by means of a series of exact analytical solutions of Maxwell
equations for gradient media. Generalized Fresnel formulae, visualizing a
profound influence of gradient and curvature of dielectric susceptibility
profiles on reflectance/transmittance of periodical photonic heterostructures
are presented. Depending on the cutoff frequency of the barrier, governed by
technologically managed spatial profile of its refractive index, propagation or
tunneling of light through these barriers are examined. Nonattenuative transfer
of EM energy by evanescent waves, tunneling through dielectric gradient
barriers, characterized by real values of refractive index, decreasing in the
depth of medium, is shown. Scaling of the obtained results for different
spectral ranges of visible, IR and THz waves is illustrated. Potential of
gradient optical structures for design of miniaturized filters, polarizers and
frequency-selective interfaces of subwavelength thickness is considered
Nonlinear plasmonic slot waveguides
We study nonlinear modes in subwavelength slot waveguides created by a
nonlinear dielectric slab sandwiched between two metals. We present the
dispersion diagrams of the families of nonlinear plasmonic modes and reveal
that the symmetric mode undergoes the symmetry-breaking bifurcation with the
energy primarily localized near one of the interfaces. We also find that the
antisymmetric mode may split into two brunches giving birth to two families of
nonlinear antisymmetric modes.Comment: 6 pages, 5 figure
Impact of amplitude jitter and signal-to-noise ratio on the nonlinear spectral compression in optical fibres
We numerically study the effects of amplitude fluctuations and signal-to-noise ratio degradation of the seed pulses on the spectral compression process arising from nonlinear propagation in an optical fibre. The unveiled quite good stability of the process against these pulse degradation factors is assessed in the context of optical regeneration of intensity-modulated signals, by combining nonlinear spectral compression with centered bandpass optical filtering. The results show that the proposed nonlinear processing scheme indeed achieves mitigation of the signal's amplitude noise. However, in the presence of a jitter of the temporal duration of the pulses, the performance of the device deteriorates
High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer
This paper was published in Journal of the Optical Society of America B-Optical Physics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-7-1323. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Mehrdad Shokooh-Saremi, Vahid G. Ta'eed, Neil J. Baker, Ian C. M. Littler, David J. Moss, Benjamin J. Eggleton, Yinlan Ruan, and Barry Luther-Davie
Low-loss waveguides in ultrafast laser-deposited As(2)S(3) chalcogenide films
This paper was published in Journal of the Optical Society of America B and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-9-1844. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davie
Integrated all-optical pulse regenerator in chalcogenide waveguides
This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-21-2900. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Vahid G. Ta’eed, Mehrdad Shokooh-Saremi, Libin Fu, David J. Moss, Martin Rochette, Ian C. M. Littler, Benjamin J. Eggleton, Yinlan Ruan, and Barry Luther-Davie
All-optical regeneration of phase-encoded signals
In this Chapter we review the need, general principles and approaches used to regenerate phase encoded signals of differing levels of coding complexity. We will describe the key underpinning technology and present the current state-of-the-art, incorporating an appropriate historic perspective throughout. The chapter finishes with a discussion of emerging research trends and broader future perspectives
- …
