314 research outputs found

    Megabits secure key rate quantum key distribution

    Full text link
    Quantum cryptography (QC) can provide unconditional secure communication between two authorized parties based on the basic principles of quantum mechanics. However, imperfect practical conditions limit its transmission distance and communication speed. Here we implemented the differential phase shift (DPS) quantum key distribution (QKD) with up-conversion assisted hybrid photon detector (HPD) and achieved 1.3 M bits per second secure key rate over a 10-km fiber, which is tolerant against the photon number splitting (PNS) attack, general collective attacks on individual photons, and any other known sequential unambiguous state discrimination (USD) attacks.Comment: 14 pages, 4 figure

    Multistep Parametric Processes in Nonlinear Optics

    Full text link
    We present a comprehensive overview of different types of parametric interactions in nonlinear optics which are associated with simultaneous phase-matching of several optical processes in quadratic nonlinear media, the so-called multistep parametric interactions. We discuss a number of possibilities of double and multiple phase-matching in engineered structures with the sign-varying second-order nonlinear susceptibility, including (i) uniform and non-uniform quasi-phase-matched (QPM) periodic optical superlattices, (ii) phase-reversed and periodically chirped QPM structures, and (iii) uniform QPM structures in non-collinear geometry, including recently fabricated two-dimensional nonlinear quadratic photonic crystals. We also summarize the most important experimental results on the multi-frequency generation due to multistep parametric processes, and overview the physics and basic properties of multi-color optical parametric solitons generated by these parametric interactions.Comment: To be published in Progress in Optic

    Gradient Optics of subwavelength nanofilms

    Get PDF
    Propagation and tunneling of light through subwavelength photonic barriers, formed by dielectric layers with continuous spatial variations of dielectric susceptibility across the film are considered. Effects of giant heterogeneity-induced non-local dispersion, both normal and anomalous, are examined by means of a series of exact analytical solutions of Maxwell equations for gradient media. Generalized Fresnel formulae, visualizing a profound influence of gradient and curvature of dielectric susceptibility profiles on reflectance/transmittance of periodical photonic heterostructures are presented. Depending on the cutoff frequency of the barrier, governed by technologically managed spatial profile of its refractive index, propagation or tunneling of light through these barriers are examined. Nonattenuative transfer of EM energy by evanescent waves, tunneling through dielectric gradient barriers, characterized by real values of refractive index, decreasing in the depth of medium, is shown. Scaling of the obtained results for different spectral ranges of visible, IR and THz waves is illustrated. Potential of gradient optical structures for design of miniaturized filters, polarizers and frequency-selective interfaces of subwavelength thickness is considered

    Nonlinear plasmonic slot waveguides

    Full text link
    We study nonlinear modes in subwavelength slot waveguides created by a nonlinear dielectric slab sandwiched between two metals. We present the dispersion diagrams of the families of nonlinear plasmonic modes and reveal that the symmetric mode undergoes the symmetry-breaking bifurcation with the energy primarily localized near one of the interfaces. We also find that the antisymmetric mode may split into two brunches giving birth to two families of nonlinear antisymmetric modes.Comment: 6 pages, 5 figure

    Impact of amplitude jitter and signal-to-noise ratio on the nonlinear spectral compression in optical fibres

    Get PDF
    We numerically study the effects of amplitude fluctuations and signal-to-noise ratio degradation of the seed pulses on the spectral compression process arising from nonlinear propagation in an optical fibre. The unveiled quite good stability of the process against these pulse degradation factors is assessed in the context of optical regeneration of intensity-modulated signals, by combining nonlinear spectral compression with centered bandpass optical filtering. The results show that the proposed nonlinear processing scheme indeed achieves mitigation of the signal's amplitude noise. However, in the presence of a jitter of the temporal duration of the pulses, the performance of the device deteriorates

    High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer

    Get PDF
    This paper was published in Journal of the Optical Society of America B-Optical Physics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-7-1323. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Mehrdad Shokooh-Saremi, Vahid G. Ta'eed, Neil J. Baker, Ian C. M. Littler, David J. Moss, Benjamin J. Eggleton, Yinlan Ruan, and Barry Luther-Davie

    Low-loss waveguides in ultrafast laser-deposited As(2)S(3) chalcogenide films

    Get PDF
    This paper was published in Journal of the Optical Society of America B and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-9-1844. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davie

    Integrated all-optical pulse regenerator in chalcogenide waveguides

    Get PDF
    This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-21-2900. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Vahid G. Ta’eed, Mehrdad Shokooh-Saremi, Libin Fu, David J. Moss, Martin Rochette, Ian C. M. Littler, Benjamin J. Eggleton, Yinlan Ruan, and Barry Luther-Davie

    All-optical regeneration of phase-encoded signals

    No full text
    In this Chapter we review the need, general principles and approaches used to regenerate phase encoded signals of differing levels of coding complexity. We will describe the key underpinning technology and present the current state-of-the-art, incorporating an appropriate historic perspective throughout. The chapter finishes with a discussion of emerging research trends and broader future perspectives
    corecore