852 research outputs found
The Dynamics of Hybrid Metabolic-Genetic Oscillators
The synthetic construction of intracellular circuits is frequently hindered
by a poor knowledge of appropriate kinetics and precise rate parameters. Here,
we use generalized modeling (GM) to study the dynamical behavior of topological
models of a family of hybrid metabolic-genetic circuits known as
"metabolators." Under mild assumptions on the kinetics, we use GM to
analytically prove that all explicit kinetic models which are topologically
analogous to one such circuit, the "core metabolator," cannot undergo Hopf
bifurcations. Then, we examine more detailed models of the metabolator.
Inspired by the experimental observation of a Hopf bifurcation in a
synthetically constructed circuit related to the core metabolator, we apply GM
to identify the critical components of the synthetically constructed
metabolator which must be reintroduced in order to recover the Hopf
bifurcation. Next, we study the dynamics of a re-wired version of the core
metabolator, dubbed the "reverse" metabolator, and show that it exhibits a
substantially richer set of dynamical behaviors, including both local and
global oscillations. Prompted by the observation of relaxation oscillations in
the reverse metabolator, we study the role that a separation of genetic and
metabolic time scales may play in its dynamics, and find that widely separated
time scales promote stability in the circuit. Our results illustrate a generic
pipeline for vetting the potential success of a potential circuit design,
simply by studying the dynamics of the corresponding generalized model
A method for the reconstruction of unknown non-monotonic growth functions in the chemostat
We propose an adaptive control law that allows one to identify unstable
steady states of the open-loop system in the single-species chemostat model
without the knowledge of the growth function. We then show how one can use this
control law to trace out (reconstruct) the whole graph of the growth function.
The process of tracing out the graph can be performed either continuously or
step-wise. We present and compare both approaches. Even in the case of two
species in competition, which is not directly accessible with our approach due
to lack of controllability, feedback control improves identifiability of the
non-dominant growth rate.Comment: expansion of ideas from proceedings paper (17 pages, 8 figures),
proceedings paper is version v
Recommended from our members
Measuring well-being in aphasia: The GHQ-28 versus the NHP
This study aimed to get the opinions of people with aphasia on two subjective well-being measures: the General Health Questionnaire 28-item version (GHQ-28) (Goldberg & Hillier, 1979) and the Nottingham Health Profile (NHP) (Hunt, McKenna, McEwen, Williams, & Papp, 1981). Twelve persons with moderate to mild aphasia of at least 2-years duration completed the GHQ-28 and the NHP. In a semistructured intenriew, they gave their feedback on the two questionnaires. All participants were able to complete both instruments. Nine out of 12 participants showed high psychological distress (> 5/28) in the GHQ-28. The NHP (part 1 less the physical abilities section) had a correlation of 0.78 (p < .01) with the GHQ-28. The social dysfunction subscale of the NHP identified more problems in the participants with aphasia than the social isolation subscale of the GHQ-28. The majority of the participants (10 out of 12) preferred the NHP, as they found it easier to understand and respond to. This small-scale study indicated that both the GHQ-28 and the NHP can be administered to people with moderate to mild aphasia and provide useful information on their well-being. Participants reported that the NHP was easier to do, and it asked questions more relevant to their situation
Hybridization in parasites: consequences for adaptive evolution, pathogenesis and public health in a changing world
[No abstract available
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
Innovation Practices in Emerging Economies: Do University Partnerships Matter?
Enterprises’ resources and capabilities determine their ability to achieve competitive advantage. In this regard, the key innovation challenges that enterprises face are liabilities associated with their age and size, and the entry barriers imposed on them. In this line, a growing number of enterprises are starting to implement innovation practices in which they employ both internal/external flows of knowledge in order to explore/exploit innovation in collaboration with commercial or scientific agents. Within this context, universities play a significant role providing fertile knowledge-intensive environments to support the exploration and exploitation of innovative and entrepreneurial ideas, especially in emerging economies, where governments have created subsidies to promote enterprise innovation through compulsory university partnerships. Based on these ideas, the purpose of this exploratory research is to provide a better understanding about the role of universities on enterprises’ innovation practices in emerging economies. More concretely, in the context of Mexico, we explored the enterprises’ motivations to collaborate with universities in terms of innovation purposes (exploration and exploitation) or alternatives to access to public funds (compulsory requirement of being involved in a university partnership). Using a sample of 10,167 Mexican enterprises in the 2012 Research and Technological Development Survey collected by the Mexican National Institute of Statistics and Geography, we tested a multinomial regression model. Our results provide insights about the relevant role of universities inside enterprises’ exploratory innovation practices, as well as, in the access of R&D research subsidies
Alfvén ‘resonance’ reconsidered: Exact equations for wave propagation across a cold inhomogeneous plasma
Frequency Locking of an Optical Cavity using LQG Integral Control
This paper considers the application of integral Linear Quadratic Gaussian
(LQG) optimal control theory to a problem of cavity locking in quantum optics.
The cavity locking problem involves controlling the error between the laser
frequency and the resonant frequency of the cavity. A model for the cavity
system, which comprises a piezo-electric actuator and an optical cavity is
experimentally determined using a subspace identification method. An LQG
controller which includes integral action is synthesized to stabilize the
frequency of the cavity to the laser frequency and to reject low frequency
noise. The controller is successfully implemented in the laboratory using a
dSpace DSP board.Comment: 18 pages, 9 figure
A Recurrent Stop-Codon Mutation in Succinate Dehydrogenase Subunit B Gene in Normal Peripheral Blood and Childhood T-Cell Acute Leukemia
BACKGROUND: Somatic cytidine mutations in normal mammalian nuclear genes occur during antibody diversification in B lymphocytes and generate an isoform of apolipoprotein B in intestinal cells by RNA editing. Here, I describe that succinate dehydrogenase (SDH; mitochondrial complex II) subunit B gene (SDHB) is somatically mutated at a cytidine residue in normal peripheral blood mononuclear cells (PBMCs) and T-cell acute leukemia. Germ line mutations in the SDHB, SDHC or SDHD genes cause hereditary paraganglioma (PGL) tumors which show constitutive activation of homeostatic mechanisms induced by oxygen deprivation (hypoxia). PRINCIPAL FINDINGS: To determine the prevalence of a mutation identified in the SDHB mRNA, 180 samples are tested. An SDHB stop-codon mutation c.136C>T (R46X) is present in a significant fraction (average = 5.8%, range = less than 1 to 30%, n = 52) of the mRNAs obtained from PBMCs. In contrast, the R46X mutation is present in the genomic DNA of PBMCs at very low levels. Examination of the PBMC cell-type subsets identifies monocytes and natural killer (NK) cells as primary sources of the mutant transcript, although lesser contributions also come from B and T lymphocytes. Transcript sequence analyses in leukemic cell lines derived from monocyte, NK, T and B cells indicate that the mutational mechanism targeting SDHB is operational in T-cell acute leukemia. Accordingly, substantial levels (more than 3%) of the mutant SDHB transcripts are detected in five of 20 primary childhood T-cell acute lymphoblastic leukemia (T-ALL) bone marrow samples, but in none of 20 B-ALL samples. In addition, distinct heterozygous SDHB missense DNA mutations are identified in Jurkat and TALL-104 cell lines which are derived from T-ALLs. CONCLUSIONS: The identification of a recurrent, inactivating stop-codon mutation in the SDHB gene in normal blood cells suggests that SDHB is targeted by a cytidine deaminase enzyme. The SDHB mutations in normal PBMCs and leukemic T cells might play a role in cellular pre-adaptation to hypoxia
- …
