421 research outputs found

    Characterising and identifying galaxy protoclusters

    Get PDF
    We study the characteristics of galaxy protoclusters using the latest L-GALAXIES semi-analytic model. Searching for protoclusters on a scale of ∼10 cMpc gives an excellent compromise between the completeness and purity of their galaxy populations, leads to high distinction from the field in overdensity space, and allows accurate determination of the descendant cluster mass. This scale is valid over a range of redshifts and selection criteria. We present a procedure for estimating, given a measured galaxy overdensity, the protocluster probability and its descendant cluster mass for a range of modelling assumptions, particularly taking into account the shape of the measurement aperture. This procedure produces lower protocluster probabilities compared to previous estimates using fixed size apertures. The relationship between active galactic nucleus (AGN) and protoclusters is also investigated and shows significant evolution with redshift; at z ∼ 2, the fraction of protoclusters traced by AGN is high, but the fraction of all AGNs in protoclusters is low, whereas atz ≥ 5 the fraction of protoclusters containing AGN is low, but most AGNs are in protoclusters. We also find indirect evidence for the emergence of a passive sequence in protoclusters at z ∼ 2, and note that a significant fraction of all galaxies reside in protoclusters at z ≥ 2, particularly the most massive

    Searching for Faint Comoving Companions to the α Centauri system in the VVV Survey Infrared Images

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2017 Crown Copyright. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.The VVV survey has observed the southern disk of the Milky Way in the near infrared, covering 240 deg2^{2} in the ZYJHKSZYJHK_S filters. We search the VVV Survey images in a \sim19 deg2^{2} field around α\alpha Centauri, the nearest stellar system to the Sun, to look for possible overlooked companions that the baseline in time of VVV would be able to uncover. The photometric depth of our search reaches YY\sim19.3 mag, JJ\sim19 mag, and KSK_S\sim17 mag. This search has yielded no new companions in α\alpha Centauri system, setting an upper mass limit for any unseen companion well into the brown dwarf/planetary mass regime. The apparent magnitude limits were turned into effective temperature limits, and the presence of companion objects with effective temperatures warmer than 325K can be ruled out using different state-of-the-art atmospheric models. These limits were transformed into mass limits using evolutionary models, companions with masses above 11 MJup_{Jup} were discarded, extending the constraints recently provided in the literature up to projected distances of dPeer reviewedFinal Published versio

    The Astropy Project : sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package

    Get PDF
    Funding: We acknowledge the Gordon and Betty Moore Foundation for their continued financial support. This work is partially supported by NASA under grant No. 80NSSC22K0347 issued through the NASA ROSES program. This work is partially supported by the international Gemini Observatory, a programof NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership of Argentina, Brazil, Canada, Chile, the Republic of Korea, and the United States of America. We also thank NumFOCUS and the Python Software Foundation for financial support. J.A.A.-M. acknowledges funding support from Macquarie University through the International Macquarie University Research Excellence Scholarship (“iMQRES”). A.B. was supported by the Lendület Program of the Hungarian Academy of Sciences, project No. LP2018-7, and the KKP-137523 “SeismoLab” Élvonal grant of the Hungarian Research, Development and Innovation Office (NKFIH). M.B. gratefully acknowledges support from the ANID BASAL project FB210003 and the FONDECYT regular grant 1211000. F.D. E. acknowledges funding through the H2020 ERC Consolidator grant 683184, the ERC Advanced grant 695671 “QUENCH” and support from the Science and Technology Facilities Council (STFC). N.K. acknowledges support from the MIT Pappalardo fellowship. K.A.O. acknowledges support from the European Research Council (ERC) through Advanced Investigator grant to C.S. Frenk, DMIDAS (GA 786910). C.P. is supported by the Canadian Space Agency under a contract with NRC Herzberg Astronomy and Astrophysics. S.P. has been supported by Spanish MINECO-FEDER grant RTI2018-096188-B-I00 J.P.G. acknowledges funding support from Spanish public funds for research from project PID2019-107061GB-C63 from the “Programas Estatales de Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i y de I+D+i Orientada a los Retos de la Sociedad,” as well as from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). N.S. acknowledges support from the National Science Foundation through the Graduate Research Fellowship Program under grant 1842402. D.S. is supported by STFC grant ST/S000240/1. N.S. acknowledges the support of the Science and Engineering Research Council of Canada (NSERC) Canadian Graduate Scholarship—Doctoral Program, [funding reference numbers CGSD547212020].The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we summarize key features in the core package as of the recent major release, version 5.0, and provide major updates on the Project. We then discuss supporting a broader ecosystem of interoperable packages, including connections with several astronomical observatories and missions. We also revisit the future outlook of the Astropy Project and the current status of Learn Astropy. We conclude by raising and discussing the current and future challenges facing the Project.Publisher PDFPeer reviewe

    The-wiZZ: Clustering redshift estimation for everyone

    Get PDF
    We present The-wiZZ, an open source and user-friendly software for estimating the redshift distributions of photometric galaxies with unknown redshifts by spatially cross-correlating them against a reference sample with known redshifts. The main benefit of The-wiZZ is in separating the angular pair finding and correlation estimation from the computation of the output clustering redshifts allowing anyone to create a clustering redshift for their sample without the intervention of an "expert". It allows the end user of a given survey to select any sub-sample of photometric galaxies with unknown redshifts, match this sample's catalog indices into a value-added data file, and produce a clustering redshift estimation for this sample in a fraction of the time it would take to run all the angular correlations needed to produce a clustering redshift. We show results with this software using photometric data from the Kilo-Degree Survey (KiDS) and spectroscopic redshifts from the Galaxy and Mass Assembly (GAMA) survey and the Sloan Digital Sky Survey (SDSS). The results we present for KiDS are consistent with the redshift distributions used in a recent cosmic shear analysis from the survey. We also present results using a hybrid machine learning-clustering redshift analysis that enables the estimation of clustering redshifts for individual galaxies. The-wiZZ can be downloaded at http://github.com/morriscb/The-wiZZ/

    Investigating the diversity of supernovae type Iax: a MUSE and NOT spectroscopic study of their environments

    Get PDF
    SN 2002cx-like Type Ia supernovae (also known as SNe Iax) represent one of the most numerous peculiar SN classes. They differ from normal SNe Ia by having fainter peak magnitudes, faster decline rates and lower photospheric velocities, displaying a wide diversity in these properties. We present both integral-field and long-slit visual-wavelength spectroscopy of the host galaxies and explosion sites of SNe Iax to provide constraints on their progenitor formation scenarios. The SN Iax explosion-site metallicity distribution is similar to that of core-collapse SNe and metal poor compared to either normal SNe Ia or SN 1991T-like events. Fainter members, speculated to form distinctly from brighter SN Iax, are found at a range of metallicities, extending to very metal poor environments. Although the SN Iax explosion-sites’ ages and star formation rates are comparatively older and less intense than the distribution of star-forming regions across their host galaxies, we confirm the presence of young stellar populations (SPs) at explosion environments for most SNe Iax, expanded here to a larger sample. Ages of the young SPs (several × 107 to 108 yr) are consistent with predictions for young thermonuclear and electron-capture SN progenitors. The lack of extremely young SPs at the explosion sites disfavours very massive progenitors such as Wolf–Rayet explosions with significant fallback. We find weak ionized gas in the only SN Iax host without obvious signs of star formation. The source of the ionization remains ambiguous but appears unlikely to be mainly due to young, massive stars

    A measurement of the millimetre emission and the Sunyaev-Zel'dovich effect associated with low-frequency radio sources

    Get PDF
    We present a statistical analysis of the millimetre-wavelength properties of 1.4GHz-selected sources and a detection of the Sunyaev–Zel’dovich (SZ) effect associated with the haloes that host them. We stack data at 148, 218 and 277GHz from the Atacama Cosmology Telescope at the positions of a large sample of radio AGN selected at 1.4GHz. The thermal SZ effect associated with the haloes that host the AGN is detected at the 5σ level through its spectral signature, representing a statistical detection of the SZ effect in some of the lowest mass haloes (average M 200 ≈ 10 13 M. h −1 70 ) studied to date. The relation between the SZ effect and mass (based on weak lensing measurements of radio galaxies) is consistent with that measured by Planck for local bright galaxies. In the context of galaxy evolution models, this study confirms that galaxies with radio AGN also typically support hot gaseous haloes. Adding Herschel observations allows us to show that the SZ signal is not significantly contaminated by dust emission. Finally, we analyse the contribution of radio sources to the angular power spectrum of the cosmic microwave background

    New OB star candidates in the Carina Arm around Westerlund 2 from VPHAS+

    Get PDF
    Date of Acceptance: 10/04/2015O and early B stars are at the apex of galactic ecology, but in the Milky Way, only a minority of them may yet have been identified. We present the results of a pilot study to select and parametrise OB star candidates in the Southern Galactic plane, down to a limiting magnitude of g=20g=20. A 2 square-degree field capturing the Carina Arm around the young massive star cluster, Westerlund 2, is examined. The confirmed OB stars in this cluster are used to validate our identification method, based on selection from the (ug,gr)(u-g, g-r) diagram for the region. Our Markov Chain Monte Carlo fitting method combines VPHAS+ u,g,r,iu, g, r, i with published J,H,KJ, H, K photometry in order to derive posterior probability distributions of the stellar parameters log(Teff)\log(\rm T_{\rm eff}) and distance modulus, together with the reddening parameters A0A_0 and RVR_V. The stellar parameters are sufficient to confirm OB status while the reddening parameters are determined to a precision of σ(A0)0.09\sigma(A_0)\sim0.09 and σ(RV)0.08\sigma(R_V)\sim0.08. There are 489 objects that fit well as new OB candidates, earlier than \simB2. This total includes 74 probable massive O stars, 5 likely blue supergiants and 32 reddened subdwarfs. This increases the number of previously known and candidate OB stars in the region by nearly a factor of 10. Most of the new objects are likely to be at distances between 3 and 6 kpc. We have confirmed the results of previous studies that, at these longer distances, these sight lines require non-standard reddening laws with $3.5R_VPeer reviewe

    Candidate high-z proto-clusters among the Planck compact sources, as revealed by Herschel-SPIRE

    Get PDF
    By determining the nature of all the Planck compact sources within 808.4 deg2 of large Herschel surveys, we have identified 27 candidate proto-clusters of dusty star forming galaxies (DSFGs) that are at least 3σ overdense in either 250, 350 or 500 μm sources. We find roughly half of all the Planck compact sources are resolved by Herschel into multiple discrete objects, with the other half remaining unresolved by Herschel. We find a significant difference between versions of the Planck catalogues, with earlier releases hosting a larger fraction of candidate proto-clusters and Galactic Cirrus than later releases, which we ascribe to a difference in the filters used in the creation of the three catalogues. We find a surface density of DSFG candidate proto-clusters of (3.3 ± 0.7) × 10−2 sources deg−2, in good agreement with previous similar studies. We find that a Planck colour selection of S857/S545 1. Our candidate proto-clusters are a factor of 5 times brighter at 353 GHz than expected from simulations, even in the most conservative estimates. Further observations are needed to confirm whether these candidate proto-clusters are physical clusters, multiple proto-clusters along the line of sight, or chance alignments of unassociated sources

    Remnant radio-loud AGN in the Herschel-ATLAS field

    Get PDF
    Only a small fraction of observed active galactic nuclei (AGN) display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting ‘remnant' radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of Low-Frequency Array (LOFAR) and the Very Large Array, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices (−1.5 ⩽ α1400150 ⩽ −0.5), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population

    A simulation-based analytic model of radio galaxies

    Get PDF
    © The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.I derive and discuss a simple semi-analytical model of the evolution of powerful radio galaxies which is not based on assumptions of self-similar growth, but rather implements some insights about the dynamics and energetics of these systems derived from numerical simulations, and can be applied to arbitrary pressure/density profiles of the host environment. The model can qualitatively and quantitatively reproduce the source dynamics and synchrotron light curves derived from numerical modelling. Approximate corrections for radiative and adiabatic losses allow it to predict the evolution of radio spectral index and of inverse-Compton emission both for active and 'remnant' sources after the jet has turned off. Code to implement the model is publicly available. Using a standard model with a light relativistic (electron-positron) jet, subequipartition magnetic fields, and a range of realistic group/cluster environments, I simulate populations of sources and show that the model can reproduce the range of properties of powerful radio sources as well as observed trends in the relationship between jet power and radio luminosity, and predicts their dependence on redshift and environment. I show that the distribution of source lifetimes has a significant effect on both the source length distribution and the fraction of remnant sources expected in observations, and so can in principle be constrained by observations. The remnant fraction is expected to be low even at low redshift and low observing frequency due to the rapid luminosity evolution of remnants, and to tend rapidly to zero at high redshift due to inverse-Compton losses.Peer reviewedFinal Published versio
    corecore