316 research outputs found

    Bulk spectral function sum rule in QCD-like theories with a holographic dual

    Full text link
    We derive the sum rule for the spectral function of the stress-energy tensor in the bulk (uniform dilatation) channel in a general class of strongly coupled field theories. This class includes theories holographically dual to a theory of gravity coupled to a single scalar field, representing the operator of the scale anomaly. In the limit when the operator becomes marginal, the sum rule coincides with that in QCD. Using the holographic model, we verify explicitly the cancellation between large and small frequency contributions to the spectral integral required to satisfy the sum rule in such QCD-like theories.Comment: 16 pages, 2 figure

    Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom

    Full text link
    The Kravchuk and Meixner polynomials of discrete variable are introduced for the discrete models of the harmonic oscillator and hydrogen atom. Starting from Rodrigues formula we construct raising and lowering operators, commutation and anticommutation relations. The physical properties of discrete models are figured out through the equivalence with the continuous models obtained by limit process.Comment: LaTeX, 14 pages (late submission

    A finite oscillator model related to sl(2|1)

    Get PDF
    We investigate a new model for the finite one-dimensional quantum oscillator based upon the Lie superalgebra sl(2|1). In this setting, it is natural to present the position and momentum operators of the oscillator as odd elements of the Lie superalgebra. The model involves a parameter p (0<p<1) and an integer representation label j. In the (2j+1)-dimensional representations W_j of sl(2|1), the Hamiltonian has the usual equidistant spectrum. The spectrum of the position operator is discrete and turns out to be of the form ±k\pm\sqrt{k}, where k=0,1,...,j. We construct the discrete position wave functions, which are given in terms of certain Krawtchouk polynomials. These wave functions have appealing properties, as can already be seen from their plots. The model is sufficiently simple, in the sense that the corresponding discrete Fourier transform (relating position wave functions to momentum wave functions) can be constructed explicitly

    A superintegrable finite oscillator in two dimensions with SU(2) symmetry

    Full text link
    A superintegrable finite model of the quantum isotropic oscillator in two dimensions is introduced. It is defined on a uniform lattice of triangular shape. The constants of the motion for the model form an SU(2) symmetry algebra. It is found that the dynamical difference eigenvalue equation can be written in terms of creation and annihilation operators. The wavefunctions of the Hamiltonian are expressed in terms of two known families of bivariate Krawtchouk polynomials; those of Rahman and those of Tratnik. These polynomials form bases for SU(2) irreducible representations. It is further shown that the pair of eigenvalue equations for each of these families are related to each other by an SU(2) automorphism. A finite model of the anisotropic oscillator that has wavefunctions expressed in terms of the same Rahman polynomials is also introduced. In the continuum limit, when the number of grid points goes to infinity, standard two-dimensional harmonic oscillators are obtained. The analysis provides the NN\rightarrow \infty limit of the bivariate Krawtchouk polynomials as a product of one-variable Hermite polynomials

    On a q-extension of Mehta's eigenvectors of the finite Fourier transform for q a root of unity

    Get PDF
    It is shown that the continuous q-Hermite polynomials for q a root of unity have simple transformation properties with respect to the classical Fourier transform. This result is then used to construct q-extended eigenvectors of the finite Fourier transform in terms of these polynomials.Comment: 12 pages, thoroughly rewritten, the q-extended eigenvectors now N-periodic with q an M-th root of

    Big q-Laguerre and q-Meixner polynomials and representations of the algebra U_q(su(1,1))

    Full text link
    Diagonalization of a certain operator in irreducible representations of the positive discrete series of the quantum algebra U_q(su(1,1)) is studied. Spectrum and eigenfunctions of this operator are found in an explicit form. These eigenfunctions, when normalized, constitute an orthonormal basis in the representation space. The initial U_q(su(1,1))-basis and the basis of eigenfunctions are interrelated by a matrix with entries, expressed in terms of big q-Laguerre polynomials. The unitarity of this connection matrix leads to an orthogonal system of functions, which are dual with respect to big q-Laguerre polynomials. This system of functions consists of two separate sets of functions, which can be expressed in terms of q-Meixner polynomials M_n(x;b,c;q) either with positive or negative values of the parameter b. The orthogonality property of these two sets of functions follows directly from the unitarity of the connection matrix. As a consequence, one obtains an orthogonality relation for q-Meixner polynomials M_n(x;b,c;q) with b<0. A biorthogonal system of functions (with respect to the scalar product in the representation space) is also derived.Comment: 15 pages, LaTe
    corecore