2,005 research outputs found
Complex transitions to synchronization in delay-coupled networks of logistic maps
A network of delay-coupled logistic maps exhibits two different
synchronization regimes, depending on the distribution of the coupling delay
times. When the delays are homogeneous throughout the network, the network
synchronizes to a time-dependent state [Atay et al., Phys. Rev. Lett. 92,
144101 (2004)], which may be periodic or chaotic depending on the delay; when
the delays are sufficiently heterogeneous, the synchronization proceeds to a
steady-state, which is unstable for the uncoupled map [Masoller and Marti,
Phys. Rev. Lett. 94, 134102 (2005)]. Here we characterize the transition from
time-dependent to steady-state synchronization as the width of the delay
distribution increases. We also compare the two transitions to synchronization
as the coupling strength increases. We use transition probabilities calculated
via symbolic analysis and ordinal patterns. We find that, as the coupling
strength increases, before the onset of steady-state synchronization the
network splits into two clusters which are in anti-phase relation with each
other. On the other hand, with increasing delay heterogeneity, no cluster
formation is seen at the onset of steady-state synchronization; however, a
rather complex unsynchronized state is detected, revealed by a diversity of
transition probabilities in the network nodes
XML Reconstruction View Selection in XML Databases: Complexity Analysis and Approximation Scheme
Query evaluation in an XML database requires reconstructing XML subtrees
rooted at nodes found by an XML query. Since XML subtree reconstruction can be
expensive, one approach to improve query response time is to use reconstruction
views - materialized XML subtrees of an XML document, whose nodes are
frequently accessed by XML queries. For this approach to be efficient, the
principal requirement is a framework for view selection. In this work, we are
the first to formalize and study the problem of XML reconstruction view
selection. The input is a tree , in which every node has a size
and profit , and the size limitation . The target is to find a subset
of subtrees rooted at nodes respectively such that
, and is maximal.
Furthermore, there is no overlap between any two subtrees selected in the
solution. We prove that this problem is NP-hard and present a fully
polynomial-time approximation scheme (FPTAS) as a solution
Heterogeneous Delays in Neural Networks
We investigate heterogeneous coupling delays in complex networks of excitable
elements described by the FitzHugh-Nagumo model. The effects of discrete as
well as of uni- and bimodal continuous distributions are studied with a focus
on different topologies, i.e., regular, small-world, and random networks. In
the case of two discrete delay times resonance effects play a major role:
Depending on the ratio of the delay times, various characteristic spiking
scenarios, such as coherent or asynchronous spiking, arise. For continuous
delay distributions different dynamical patterns emerge depending on the width
of the distribution. For small distribution widths, we find highly synchronized
spiking, while for intermediate widths only spiking with low degree of
synchrony persists, which is associated with traveling disruptions, partial
amplitude death, or subnetwork synchronization, depending sensitively on the
network topology. If the inhomogeneity of the coupling delays becomes too
large, global amplitude death is induced
Mean field approximation of two coupled populations of excitable units
The analysis on stability and bifurcations in the macroscopic dynamics
exhibited by the system of two coupled large populations comprised of
stochastic excitable units each is performed by studying an approximate system,
obtained by replacing each population with the corresponding mean-field model.
In the exact system, one has the units within an ensemble communicating via the
time-delayed linear couplings, whereas the inter-ensemble terms involve the
nonlinear time-delayed interaction mediated by the appropriate global
variables. The aim is to demonstrate that the bifurcations affecting the
stability of the stationary state of the original system, governed by a set of
4N stochastic delay-differential equations for the microscopic dynamics, can
accurately be reproduced by a flow containing just four deterministic
delay-differential equations which describe the evolution of the mean-field
based variables. In particular, the considered issues include determining the
parameter domains where the stationary state is stable, the scenarios for the
onset and the time-delay induced suppression of the collective mode, as well as
the parameter domains admitting bistability between the equilibrium and the
oscillatory state. We show how analytically tractable bifurcations occurring in
the approximate model can be used to identify the characteristic mechanisms by
which the stationary state is destabilized under different system
configurations, like those with symmetrical or asymmetrical inter-population
couplings.Comment: 5 figure
Currency forecasting: an investigation of extrapolative judgement
Cataloged from PDF version of article.This paper aims to explore the potential effects of trend type, noise and forecast horizon on experts' and novices' probabilistic forecasts. The subjects made forecasts over six time horizons from simulated monthly currency series based on a random walk, with zero, constant and stochastic drift, at two noise levels. The difference between the Mean Absolute Probability Score of each participant and an AR(1) model was used to evaluate performance. The results showed that the experts performed better than the novices, although worse than the model except in the case of zero drift series. No clear expertise effects occurred over horizons, albeit subjects' performance relative to the model improved as the horizon increased. Possible explanations are offered and some suggestions for future research are outlined
Evaluating predictive performance of judgemental extrapolations from simulated currency series
Cataloged from PDF version of article.Judgemental forecasting of exchange rates is critical for ®nancial decision-making. Detailed investigations of the
potential e ects of time-series characteristics on judgemental currency forecasts demand the use of simulated series
where the form of the signal and probability distribution of noise are known. The accuracy measures Mean Absolute
Error (MAE) and Mean Squared Error (MSE) are frequently applied quantities in assessing judgemental predictive
performance on actual exchange rate data. This paper illustrates that, in applying these measures to simulated series
with Normally distributed noise, it may be desirable to use their expected values after standardising the noise variance.
A method of calculating the expected values for the MAE and MSE is set out, and an application to ®nancial experts'
judgemental currency forecasts is presented. Ó 1999 Elsevier Science B.V. All rights reserved
Spectral plots and the representation and interpretation of biological data
It is basic question in biology and other fields to identify the char-
acteristic properties that on one hand are shared by structures from a
particular realm, like gene regulation, protein-protein interaction or neu- ral
networks or foodwebs, and that on the other hand distinguish them from other
structures. We introduce and apply a general method, based on the spectrum of
the normalized graph Laplacian, that yields repre- sentations, the spectral
plots, that allow us to find and visualize such properties systematically. We
present such visualizations for a wide range of biological networks and compare
them with those for networks derived from theoretical schemes. The differences
that we find are quite striking and suggest that the search for universal
properties of biological networks should be complemented by an understanding of
more specific features of biological organization principles at different
scales.Comment: 15 pages, 7 figure
Synchronization and modularity in complex networks
We investigate the connection between the dynamics of synchronization and the
modularity on complex networks. Simulating the Kuramoto's model in complex
networks we determine patterns of meta-stability and calculate the modularity
of the partition these patterns provide. The results indicate that the more
stable the patterns are, the larger tends to be the modularity of the partition
defined by them. This correlation works pretty well in homogeneous networks
(all nodes have similar connectivity) but fails when networks contain hubs,
mainly because the modularity is never improved where isolated nodes appear,
whereas in the synchronization process the characteristic of hubs is to have a
large stability when forming its own community.Comment: To appear in the Proceedings of Workshop on Complex Systems: New
Trends and Expectations, Santander, Spain, 5-9 June 200
Discovering universal statistical laws of complex networks
Different network models have been suggested for the topology underlying
complex interactions in natural systems. These models are aimed at replicating
specific statistical features encountered in real-world networks. However, it
is rarely considered to which degree the results obtained for one particular
network class can be extrapolated to real-world networks. We address this issue
by comparing different classical and more recently developed network models
with respect to their generalisation power, which we identify with large
structural variability and absence of constraints imposed by the construction
scheme. After having identified the most variable networks, we address the
issue of which constraints are common to all network classes and are thus
suitable candidates for being generic statistical laws of complex networks. In
fact, we find that generic, not model-related dependencies between different
network characteristics do exist. This allows, for instance, to infer global
features from local ones using regression models trained on networks with high
generalisation power. Our results confirm and extend previous findings
regarding the synchronisation properties of neural networks. Our method seems
especially relevant for large networks, which are difficult to map completely,
like the neural networks in the brain. The structure of such large networks
cannot be fully sampled with the present technology. Our approach provides a
method to estimate global properties of under-sampled networks with good
approximation. Finally, we demonstrate on three different data sets (C.
elegans' neuronal network, R. prowazekii's metabolic network, and a network of
synonyms extracted from Roget's Thesaurus) that real-world networks have
statistical relations compatible with those obtained using regression models
- …
