1,247 research outputs found
Multidisciplinary research leading to utilization of extraterrestrial resources Quarterly status report, 1 Jul. - 1 Oct. 1967
NASA program of multidisciplinary research on use of extraterrestrial resource
Multidisciplinary research leading to utilization of extraterrestrial resources Quarterly status report, 1 Oct. 1968 - 1 Jan. 1969
Magnetic properties of simulated lunar rock sample
Multidisciplinary research leading to utilization of extraterrestrial resources Quarterly status report, 1 Jul. - 1 Oct. 1969
Surface properties, failure processes, and thermodynamic properties of rock in simulated lunar environment
Electrochromic orbit control for smart-dust devices
Recent advances in MEMS (micro electromechanical systems) technology are leading to spacecraft which are the shape and size of computer chips, so-called SpaceChips, or ‘smart dust devices’. These devices can offer highly distributed sensing when used in future swarm applications. However, they currently lack a feasible strategy for active orbit control. This paper proposes an orbit control methodology for future SpaceChip devices which is based on exploiting the effects of solar radiation pressure using electrochromic coatings. The concept presented makes use of the high area-to-mass ratio of these devices, and consequently the large force exerted upon them by solar radiation pressure, to control their orbit evolution by altering their surface optical properties. The orbital evolution of Space Chips due to solar radiation pressure can be represented by a Hamiltonian system, allowing an analytic development of the control methodology. The motion in the orbital element phase space resembles that of a linear oscillator, which is used to formulate a switching control law. Additional perturbations and the effect of eclipses are accounted for by modifying the linearized equations of the secular change in orbital elements around an equilibrium point in the phase space of the problem. Finally, the effectiveness of the method is demonstrated in a test case scenario
Startup of the High-Intensity Ultracold Neutron Source at the Paul Scherrer Institute
Ultracold neutrons (UCN) can be stored in suitable bottles and observed for
several hundreds of seconds. Therefore UCN can be used to study in detail the
fundamental properties of the neutron. A new user facility providing ultracold
neutrons for fundamental physics research has been constructed at the Paul
Scherrer Institute, the PSI UCN source. Assembly of the facility finished in
December 2010 with the first production of ultracold neutrons. Operation
approval was received in June 2011. We give an overview of the source and the
status at startup.Comment: Proceedings of the International Conference on Exotic Atoms and
Related Topics - EXA2011 September 5-9, 2011 Austrian Academy of Sciences,
Theatersaal, Sonnenfelsgasse 19, 1010 Wien, Austria 6 pages, 3 figure
Fission studies with 140 MeV -Particles
Binary fission induced by 140 MeV -particles has been measured for
Ag, La, Ho and Au targets. The measured
quantities are the total kinetic energies, fragment masses, and fission cross
sections. The results are compared with other data and systematics. A minimum
of the fission probability in the vicinity is observed.Comment: 4 figures, 2 table
Recommended from our members
Direct and indirect effects of rotavirus vaccination: Comparing predictions from transmission dynamic models
Early observations from countries that have introduced rotavirus vaccination suggest that there may be indirect protection for unvaccinated individuals, but it is unclear whether these benefits will extend to the long term. Transmission dynamic models have attempted to quantify the indirect protection that might be expected from rotavirus vaccination in developed countries, but results have varied. To better understand the magnitude and sources of variability in model projections, we undertook a comparative analysis of transmission dynamic models for rotavirus. We fit five models to reported rotavirus gastroenteritis (RVGE) data from England and Wales, and evaluated outcomes for short- and long-term vaccination effects. All of our models reproduced the important features of rotavirus epidemics in England and Wales. Models predicted that during the initial year after vaccine introduction, incidence of severe RVGE would be reduced 1.8-2.9 times more than expected from the direct effects of the vaccine alone (28-50% at 90% coverage), but over a 5-year period following vaccine introduction severe RVGE would be reduced only by 1.1-1.7 times more than expected from the direct effects (54-90% at 90% coverage). Projections for the long-term reduction of severe RVGE ranged from a 55% reduction at full coverage to elimination with at least 80% coverage. Our models predicted short-term reductions in the incidence of RVGE that exceeded estimates of the direct effects, consistent with observations from the United States and other countries. Some of the models predicted that the short-term indirect benefits may be offset by a partial shifting of the burden of RVGE to older unvaccinated individuals. Nonetheless, even when such a shift occurs, the overall reduction in severe RVGE is considerable. Discrepancies among model predictions reflect uncertainties about age variation in the risk and reporting of RVGE, and the duration of natural and vaccine-induced immunity, highlighting important questions for future research
Spallation Residues in the Reaction 56Fe + p at 0.3, 0.5, 0.75, 1.0 and 1.5 A GeV
The spallation residues produced in the bombardment of 56}Fe at 1.5, 1.0,
0.75, 0.5 and 0.3 A GeV on a liquid-hydrogen target have been measured using
the reverse kinematics technique and the Fragment Separator at GSI (Darmstadt).
This technique has permitted the full identification in charge and mass of all
isotopes produced with cross-sections larger than 10^{-2} mb down to Z=8. Their
individual production cross-sections and recoil velocities at the five energies
are presented. Production cross-sections are compared to previously existing
data and to empirical parametric formulas, often used in cosmic-ray
astrophysics. The experimental data are also extensively compared to different
combinations of intra-nuclear cascade and de-excitation models. It is shown
that the yields of the lightest isotopes cannot be accounted for by standard
evaporation models. The GEMINI model, which includes an asymmetric fission
decay mode, gives an overall good agreement with the data. These experimental
data can be directly used for the estimation of composition modifications and
damages in materials containing iron in spallation sources. They are also
useful for improving high precision cosmic-ray measurements.Comment: Submited to Phys. Rev. C (10/2006
Cross-sections of spallation residues produced in 1.A GeV 208Pb on proton reactions
Spallation residues produced in 1 GeV per nucleon Pb on proton
reactions have been studied using the FRagment Separator facility at GSI.
Isotopic produc- tion cross-sections of elements from Pm to Pb
have been measured down to 0.1 mb with a high accuracy. The recoil kinetic
energies of the produced fragments were also determined. The obtained
cross-sections agree with most of the few existing gamma-spectroscopy data.
Data are compared with different intra nuclear-cascade and evaporation-fission
models. Drastic deviations were found for a standard code used in technical
applications.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Lett.
Revised version May 12, 200
- …
