564 research outputs found
Semisolid processing characteristics of AM series Mg alloys by rheo-diecasting
The official published version of this Article can be found at the link below - Copyright @ 2006 ASM InternationalAn investigation has been made into the solidification behavior and microstructural evolution of AM50, AM70, and AM90 alloys during rheo-diecasting, their processibility, and the resulting mechanical properties. It was found that solidification of AM series alloys under intensive melt shearing in the unique twin-screw slurry maker during rheo-diecasting gave rise to numerous spheroidal primary magnesium (Mg) particles that were uniformly present in the microstructure. As a result, the network of the beta-Mg17Al12 phase was consistently interrupted by these spheroidal and ductile particles. Such a microstructure reduced the obstacle of deformation and the harmfulness of the beta-Mg17Al12 network on ductility, and therefore improved the ductility of rheo-diecast AM alloys. It was shown that, even with 9 wt pct Al, the elongation of rheo-diecast AM90 still achieved (9 +/- 1.2) pct. Rheodiecasting thus provides an attractive processing route for upgrading the alloy specification of AM series alloys by increasing the aluminum (Al) content while ensuring ductility. Assessment of the processibility of AM series alloys for semisolid processing showed that high Al content AM series alloys are more suitable for rheo-diecasting than low Al content alloys, because of the lower sensitivity of solid fraction to temperature, the lower liquidus temperature, and the smaller interval between the semisolid processing temperature and the complete solidification temperature.This work is supported by the EPSR
Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model
We study the solutions of the gap equation, the thermodynamic potential and
the chiral susceptibility in and beyond the chiral limit at finite chemical
potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation
between the chiral susceptibility and the thermodynamic potential in the NJL
model. We find that the chiral susceptibility is a quantity being able to
represent the furcation of the solutions of the gap equation and the
concavo-convexity of the thermodynamic potential in NJL model. It indicates
that the chiral susceptibility can identify the stable state and the
possibility of the chiral phase transition in NJL model.Comment: 21 pages, 6 figures, misprints are correcte
In situ observation of calcium oxide treatment of inclusions in molten steel by confocal microscopy
Calcium treatment of aluminum killed steel was observed in situ using high-temperature confocal scanning laser microscope (HT-CSLM). This technique along with a novel experimental design enables continuous observation of clustering behavior of inclusions before and after the calcium treatment. Results show that the increase in average inclusion size in non-calcium-treated condition was much faster compared to calcium-treated condition. Results also show that the magnitude of attractive capillary force between inclusion particles in non-treated condition was about 10−15 N for larger particles (10 µm) and 10−16 N for smaller particles (5 µm) and acting length of force was about 30 µm. In the case of calcium-treated condition, the magnitude and acting length of force was reduced to 10−16 N and 10 µm, respectively, for particles of all sizes. This change in attractive capillary attractive force is due to change in inclusion morphology from solid alumina disks to liquid lens particles during calcium treatment
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Exploring metabolic responses of potato tissue induced by electric pulses
In this study, we investigated the metabolic
responses of potato tissue induced by pulsed electric field
(PEF). Potato tissue was subjected to field strengths ranging
from 30 to 500 V/cm, with a single rectangular pulse of 10 μs,
100 μs, or 1 ms. Metabolic responses were monitored using
isothermal calorimetry, changes on electrical resistance during
the delivery of the pulse, as well as impedance measurements.
Our results show that the metabolic response involves oxygen
consuming pathways as well as other unidentified events that
are shown to be insensitive to metabolic inhibitors such as
KCN and sodium azide. The metabolic response is strongly
dependent on pulsing conditions and is independent of the
total permeabilization achieved by the pulse. Evidence shows
that calorimetry is a simple and powerful method for
exploring conditions for metabolic stimulation, providing
information on metabolic responses that can not be obtained
from electrical measurements. This study set the basis for
further investigations on defense-related consequences of
PEF-induced stress.Sparbanksstiftelsen Färs & Frosta (Sweden).Fundação para a Ciência e a Tecnologia (FCT).Lund University (Sweden).Department of Cell and Organism Biology; Department of Plant Biochemistry
Observation of a 1750 MeV/c^2 Enhancement in the Diffractive Photoproduction of K^+K^-
Using the FOCUS spectrometer with photon beam energies between 20 and 160
\gev, we confirm the existence of a diffractively photoproduced enhancement in
at 1750 \mevcc with nearly 100 times the statistics of previous
experiments. Assuming this enhancement to be a single resonance with a
Breit-Wigner mass shape, we determine its mass to be
\mevcc and its width to be \mevcc. We find no
corresponding enhancement at 1750 \mevcc in , and again neglecting any
possible interference effects we place limits on the ratio . Our results are consistent with previous
photoproduction experiments, but, because of the much greater statistics,
challenge the common interpretation of this enhancement as the
seen in annihilation experiments.Comment: 10 pages, 5 figure
Evolution of grain boundary network topology in 316L austenitic stainless steel during powder hot isostatic pressing
The grain boundary network evolution of 316L austenitic steel powder during its densification by hot isostatic pressing (HIPing) was investigated. While the as-received powder contained a network of random high angle grain boundaries, the fully consolidated specimen had a large fraction of annealing twins, indicating that during densification, the microstructure evolves via recrystallization. By interrupting the HIPing process at different points in time, microstructural changes were tracked quantitatively at every stage using twin boundary fractions, distribution of different types of triple junctions, and the parameters associated with twin related domains (TRDs). Results revealed that, with increase in temperature, (i) the fraction of annealing twins increased steadily, but they mostly were not part of the grain boundary network in the fully consolidated specimen and (ii) the average number of grains within a TRD, the length of longest chain, and twinning polysynthetism increased during HIPing and (iii) the powder characteristics and the HIPing parameters have a strong influence on the development of grain boundary network. Based on the results obtained, possible alterations to the HIPing process are discussed, which could potentially allow twin induced grain boundary engineering
Universal interpretations of vocal music
Despite the variability of music across cultures, some types of human songs share acoustic characteristics. For example, dance songs tend to be loud and rhythmic, and lullabies tend to be quiet and melodious. Human perceptual sensitivity to the behavioral contexts of songs, based on these musical features, suggests that basic properties of music are mutually intelligible, independent of linguistic or cultural content. Whether these effects reflect universal interpretations of vocal music, however, is unclear because prior studies focus almost exclusively on English-speaking participants, a group that is not representative of humans. Here, we report shared intuitions concerning the behavioral contexts of unfamiliar songs produced in unfamiliar languages, in participants living in Internet-connected industrialized societies (n = 5,516 native speakers of 28 languages) or smaller-scale societies with limited access to global media (n = 116 native speakers of three non-English languages). Participants listened to songs randomly selected from a representative sample of human vocal music, originally used in four behavioral contexts, and rated the degree to which they believed the song was used for each context. Listeners in both industrialized and smaller-scale societies inferred the contexts of dance songs, lullabies, and healing songs, but not love songs. Within and across cohorts, inferences were mutually consistent. Further, increased linguistic or geographical proximity between listeners and singers only minimally increased the accuracy of the inferences. These results demonstrate that the behavioral contexts of three common forms of music are mutually intelligible cross-culturally and imply that musical diversity, shaped by cultural evolution, is nonetheless grounded in some universal perceptual phenomena
Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector
Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations
Search for W′→tb→qqbb decays in pp collisions at √s=8 TeV with the ATLAS detector
A search for a massive W′ gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of √s=8 TeV and corresponds to 20.3 fb−1 of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W′ bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16pb to 0.33pb for left-handed W′ bosons, and ranging from 0.10pb to 0.21pb for W′ bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′boson
- …
