270 research outputs found
The proton low-mass microquasar: high-energy emission
A population of unidentified gamma-ray sources is forming a structure
resembling a halo around the Galactic center. These sources are highly
variable, and hence they should be associated with compact objects.
Microquasars are objects undergoing accretion with relativistic jets; if such
an object has a low-mass, evolved, donor star, it might be found in the
Galactic halo. If these low-mass microquasars can generate detectable gamma-ray
emission, then they are natural candidates to account for the halo high-energy
sources. We aim to construct models for high-energy emission of low-mass
microquasars, which could produce a significant luminosity in the gamma-ray
domain. We consider that a significant fraction of the relativistic particles
in the jets of low-mass microquasars are protons and then we study the
production of high-energy emission through proton synchrotron radiation and
photopion production. Photopair production and leptonic processes are
considered as well. We compute a number of specific models with different
parameters to explore the possibilities of this scenario.} We find that
important luminosities, in the range of erg s, can be
achieved by proton synchrotron radiation in the Gamma-Ray Large Area Space
Telescope (GLAST) energy range, and lower, but still significant luminosities
at higher energies for some models. We conclude that the "proton microquasar"
model offers a very interesting alternative to account for the halo gamma-ray
sources and presents a variety of predictions that might be tested in the near
future by instruments like GLAST, the High-Energy Stereoscopic System II (HESS
II), the Major Atmospheric Gamma-ray Imaging Cherenkov telescope II (MAGIC II),
and neutrino telescopes like IceCube.Comment: 11 pages, 7 figures, final version, accepted for publication in A&
Plans for Kaon Physics at BNL
I give an overview of current plans for kaon physics at BNL. The program is
centered on the rare decay modes K+ --> pi+ nu nubar and KL --> pi0 nu nubar.Comment: 10 pages, 8 figures. Uses espcrc2.sty. For the proceedings of HIF04:
High Intensity Frontier Workshop, La Biodola, Isola D'Elba, June 5-8, 200
Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization
A versatile method is described for the practical computation of the discrete
Fourier transforms (DFT) of a continuous function given by its values
at the points of a uniform grid generated by conjugacy classes
of elements of finite adjoint order in the fundamental region of
compact semisimple Lie groups. The present implementation of the method is for
the groups SU(2), when is reduced to a one-dimensional segment, and for
in multidimensional cases. This simplest case
turns out to result in a transform known as discrete cosine transform (DCT),
which is often considered to be simply a specific type of the standard DFT.
Here we show that the DCT is very different from the standard DFT when the
properties of the continuous extensions of these two discrete transforms from
the discrete grid points to all points are
considered. (A) Unlike the continuous extension of the DFT, the continuous
extension of (the inverse) DCT, called CEDCT, closely approximates
between the grid points . (B) For increasing , the derivative of CEDCT
converges to the derivative of . And (C), for CEDCT the principle of
locality is valid. Finally, we use the continuous extension of 2-dimensional
DCT to illustrate its potential for interpolation, as well as for the data
compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's
Repor
Precision Study of Positronium: Testing Bound State QED Theory
As an unstable light pure leptonic system, positronium is a very specific
probe atom to test bound state QED. In contrast to ordinary QED for free
leptons, the bound state QED theory is not so well understood and bound state
approaches deserve highly accurate tests. We present a brief overview of
precision studies of positronium paying special attention to uncertainties of
theory as well as comparison of theory and experiment. We also consider in
detail advantages and disadvantages of positronium tests compared to other QED
experiments.Comment: A talk presented at Workshop on Positronium Physics (ETH Zurich, May
30-31, 2003
Magnetic field effects on neutrino production in microquasars
We investigate the effects of magnetic fields on neutrino production in
microquasars. We calculate the steady particle distributions for the pions and
muons generated in p-gamma and p-p interactions in the jet taking the effects
of all energy losses into account. The obtained neutrino emission is
significantly modified due to the synchrotron losses suffered by secondary
pions and muons. The estimates made for neutrino fluxes arriving on the Earth
imply that detection of high-energy neutrinos from the vicinity of the compact
object can be difficult. However, in the case of windy microquasars, the
interaction of energetic protons in the jet with matter of dense clumps of the
wind could produce detectable neutrinos. This is because the pions and muons at
larger distances from the compact object will not be affected by synchrotron
losses.Comment: 12 pages, 11 figures, accepted for publication in A&
New constraints on Planck-scale Lorentz Violation in QED from the Crab Nebula
We set constraints on O(E/M) Lorentz Violation in QED in an effective field
theory framework. A major consequence of such assumptions is the modification
of the dispersion relations for electrons/positrons and photons, which in turn
can affect the electromagnetic output of astrophysical objects. We compare the
information provided by multiwavelength observations with a full and
self-consistent computation of the broad-band spectrum of the Crab Nebula. We
cast constraints of order 10^{-5} at 95% confidence level on the lepton Lorentz
Violation parameters.Comment: 23 pages, 9 figures. v2: added comments and references, matches
version accepted by JCA
Implications of a Nonthermal Origin of the Excess EUV Emission from the Coma Cluster of Galaxies
The inverse Compton (IC) interpretation of the excess EUV emission, that was
recently reported from several clusters of galaxies, suggests that the amount
of relativistic electrons in the intracluster medium is highly significant,
W_e>10^{61} erg. Considering Coma as the prototype galaxy cluster of nonthermal
radiation, we discuss implications of the inverse Compton origin of the excess
EUV fluxes in the case of low intracluster magnetic fields of order 0.1 muG, as
required for the IC interpretation of the observed excess hard X-ray flux, and
in the case of high fields of order 1 muG as suggested by Faraday rotation
measurements. Although for such high intracluster fields the excess hard X-rays
will require an explanation other than by the IC effect, we show that the
excess EUV flux can be explained by the IC emission of a `relic' population of
electrons driven into the incipient intracluster medium at the epoch of
starburst activity by galactic winds, and later on reenergized by adiabatic
compression and/or large-scale shocks transmitted through the cluster as the
consequence of more recent merger events. For high magnetic fields B > 1 muG
the interpretation of the radio fluxes of Coma requires a second population of
electrons injected recently. They can be explained as secondaries produced by a
population of relativistic protons. We calculate the fluxes of gamma-rays to be
expected in both the low and high magnetic field scenarios, and discuss
possibilities to distinguish between these two principal options by future
gamma-ray observations.Comment: LaTeX, 6 figures; accepted for publication in Ap
Shock Acceleration of Cosmic Rays - a critical review
Motivated by recent unsuccessful efforts to detect the predicted flux of TeV
gamma-rays from supernova remnants, we present a critical examination of the
theory on which these predictions are based. Three crucial problems are
identified: injection, maximum achievable particle energy and spectral index.
In each case significant new advances in understanding have been achieved,
which cast doubt on prevailing paradigms such as Bohm diffusion and
single-fluid MHD. This indicates that more realistic analytical models, backed
by more sophisticated numerical techniques should be employed to obtain
reliable predictions. Preliminary work on incorporating the effects of
anomalous transport suggest that the resulting spectrum should be significantly
softer than that predicted by conventional theory.Comment: 8 pages, invited review presented at the 17th ECRS, Lodz, July 2000;
to appear in Journal of Physics G: Nuclear and Particle Physic
The obscured gamma-ray and UHECR universe
Auger results on clustering of > 60 EeV ultra-high energy cosmic ray (UHECR)
ions and the interpretation of the gamma-ray spectra of TeV blazars are
connected by effects from the extragalactic background light (EBL). The EBL
acts as an obscuring medium for gamma rays and a reprocessing medium for UHECR
ions and protons, causing the GZK cutoff. The study of the physics underlying
the coincidence between the GZK energy and the clustering energy of UHECR ions
favors a composition of > 60 EeV UHECRs in CNO group nucleons. This has
interesting implications for the sources of UHECRs. We also comment on the
Auger analysis.Comment: 11 pages, 10 figures, in the International Conference on Topics in
Astroparticle and Underground Physics (TAUP) 2007, Sendai, Japan, September
11-15, 200
Evidence for TeV gamma ray emission from Cassiopeia A
232 hours of data were accumulated from 1997 to 1999, using the HEGRA
Stereoscopic Cherenkov Telescope System to observe the supernova remnant
Cassiopeia A. TeV gamma ray emission was detected at the 5 sigma level, and a
flux of (5.8 +- 1.2(stat) +- 1.2(syst)) 10^(-9) ph m^(-2) s^(-1) above 1 TeV
was derived. The spectral distribution is consistent with a power law with a
differential spectral index of -2.5 +- 0.4(stat) +- 0.1(syst) between 1 and 10
TeV. As this is the first report of the detection of a TeV gamma ray source on
the "centi-Crab" scale, we present the analysis in some detail. Implications
for the acceleration of cosmic rays depend on the details of the source
modeling. We discuss some important aspects in this paper.Comment: 9 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
- …
