3,665 research outputs found
Surface Phonons and Other Localized Excitations
The diatomic linear chain of masses coupled by harmonic springs is a
textboook model for vibrational normal modes (phonons) in crystals. In addition
to propagating acoustic and optic branches, this model is known to support a
``gap mode'' localized at the surface, provided the atom at the surface has
light rather than heavy mass. An elementary argument is given which explains
this mode and provides values for the frequency and localization length. By
reinterpreting this mode in different ways, we obtain the frequency and
localization lengths for three other interesting modes: (1) the surface
vibrational mode of a light mass impurity at the surface of a monatomic chain;
(2) the localized vibrational mode of a stacking fault in a diatomic chain; and
(3) the localized vibrational mode of a light mass impurity in a monatomic
chain.Comment: 5 pages with 4 embedded postscript figures. This paper will appear in
the American Journal of Physic
Angle-dependent magnetothermal conductivity in d-wave superconductors
We analyse the behavior of the thermal conductivity, , in the
vortex state of a quasi-two-dimensional d-wave superconductor when both the
heat current and the applied magnetic field are in the basal plane. At low
temperature the effect of the field is accounted for in a semiclassical
approximation, via a Doppler shift in the spectrum of the nodal quasiparticles.
In that regime exhibits twofold oscillations as a function of the
angle between the direction of the field in the plane and the direction of the
heat current, in agreement with experiment.Comment: 2 pages, submitted to proceedings of M2S-HTSC-VI (Houston
Thermal conductivity in the vortex state of d-wave superconductors
We present the results of a microscopic calculation of the longitudinal
thermal conductivity of quasiparticles, , in a 2D d-wave
superconductor in the vortex state. Our approach takes into account both
impurity scattering and a contribution to the thermal transport lifetime due to
the scattering of quasiparticles off of vortices. We compare the results with
the experimental measurements on high-T cuprates and organic
superconductors.Comment: 2 pages, submitted to proceedings of M2S-HTSC-VI (Houston
Approach of a class of discontinuous dynamical systems of fractional order: existence of the solutions
In this letter we are concerned with the possibility to approach the
existence of solutions to a class of discontinuous dynamical systems of
fractional order. In this purpose, the underlying initial value problem is
transformed into a fractional set-valued problem. Next, the Cellina's Theorem
is applied leading to a single-valued continuous initial value problem of
fractional order. The existence of solutions is assured by a P\'{e}ano like
theorem for ordinary differential equations of fractional order.Comment: accepted IJBC, 5 pages, 1 figur
Research of metal solidification in zero-g state
An experiment test apparatus that allows metal melting and resolidification in the three seconds available during free fall in a drop tower was built and tested in the tower. Droplets (approximately 0.05 cm) of pure nickel and 1090 steel were prepared in this fashion. The apparatus, including instrumentation, is described. As part of the instrumentation, a method for measuring temperature-time histories of the free floating metal droplets was developed. Finally, a metallurgical analysis of the specimens prepared in the apparatus is presented
Nonsmooth Analysis
This survey of nonsmooth analysis sets out to prove an inverse function theorem for set-valued maps. The inverse function theorem for the more usual smooth maps plays a very important role in the solution of many problems in pure and applied analysis, and we can expect such an adaptation of this theorem also to be of great value. For example, it can be used to solve convex minimization problems and to prove the Lipschitz behavior of its solutions when the natural parameters vary--a very important problem in marginal theory in economics
Risk-bounded formation of fuzzy coalitions among service agents.
Cooperative autonomous agents form coalitions in order ro share and combine resources and services to efficiently respond to market demands. With the variety of resources and services provided online today, there is a need for stable and flexible techniques to support the automation of agent coalition formation in this context. This paper describes an approach to the problem based on fuzzy coalitions. Compared with a classic cooperative game with crisp coalitions (where each agent is a full member of exactly one coalition), an agent can participate in multiple coalitions with varying degrees of involvement. This gives the agent more freedom and flexibility, allowing them to make full use of their resources, thus maximising utility, even if only comparatively small coalitions are formed. An important aspect of our approach is that the agents can control and bound the risk caused by the possible failure or default of some partner agents by spreading their involvement in diverse coalitions
Detection of antibody-dependent complement mediated inactivation of both autologous and heterologous virus in primary HIV-1 infection
Specific CD8 T-cell responses to human immunodeficiency virus type 1 (HIV-1) are induced in primary infection and make an important contribution to the control of early viral replication. The importance of neutralizing antibodies in containing primary viremia is questioned because they usually arise much later. Nevertheless antienvelope antibodies develop simultaneously with, or even before, peak viremia. We determined whether such antibodies might control viremia by complement-mediated inactivation (CMI). In each of seven patients studied, antibodies capable of CMI appeared at or shortly after the peak in viremia, concomitantly with detection of virus-specific T-cell responses. The CMI was effective on both autologous and heterologous HIV-1 isolates. Activation of the classical pathway and direct viral lysis were at least partly responsible. Since immunoglobulin G (IgG)-antibodies triggered the CMI, specific memory B cells could also be induced by vaccination. Thus, consideration should be given to vaccination strategies that induce IgG antibodies capable of CMI
Scalar Representation and Conjugation of Set-Valued Functions
To a function with values in the power set of a pre-ordered, separated
locally convex space a family of scalarizations is given which completely
characterizes the original function. A concept of a Legendre-Fenchel conjugate
for set-valued functions is introduced and identified with the conjugates of
the scalarizations. Using this conjugate, weak and strong duality results are
proven.Comment: arXiv admin note: substantial text overlap with arXiv:1012.435
Angular Position of Nodes in the Superconducting Gap of Quasi-2D Heavy-Fermion Superconductor CeCoIn_5
The thermal conductivity of the heavy-fermion superconductor CeCoIn_5 has
been studied in a magnetic field rotating within the 2D planes. A clear
fourfold symmetry of the thermal conductivity which is characteristic of a
superconducting gap with nodes along the (+-pi,+-pi)-directions is resolved.
The thermal conductivity measurement also reveals a first order transition at
H_c2, indicating a Pauli limited superconducting state. These results indicate
that the symmetry most likely belongs to d_{x^2-y^2}, implying that the
anisotropic antiferromagnetic fluctuation is relevant to the superconductivity.Comment: 5 Pages, 4 figure
- …
