717 research outputs found

    Heavy Viable Trajectories of Controlled Systems

    Get PDF
    We define and study the concept of heavy viable trajectories of a controlled system with feedbacks. Viable trajectories are trajectories satisfying at each instant given constraints on the state. The controls regulating viable trajectories evolve according a set-valued feedback map. Heavy viable trajectories are the ones which are associated to the controls in the feedback map whose velocity has at each instant the minimal norm. We construct the differential equation governing the evolution of the controls associated to heavy viable trajectories and we prove their existence

    Fixed points of dynamic processes of set-valued F-contractions and application to functional equations

    Get PDF
    The article is a continuation of the investigations concerning F-contractions which have been recently introduced in [Wardowski in Fixed Point Theory Appl. 2012:94,2012]. The authors extend the concept of F-contractive mappings to the case of nonlinear F-contractions and prove a fixed point theorem via the dynamic processes. The paper includes a non-trivial example which shows the motivation for such investigations. The work is summarized by the application of the introduced nonlinear F-contractions to functional equations

    Generating and Adding Flows on Locally Complete Metric Spaces

    Full text link
    As a generalization of a vector field on a manifold, the notion of an arc field on a locally complete metric space was introduced in \cite{BC}. In that paper, the authors proved an analogue of the Cauchy-Lipschitz Theorem i.e they showed the existence and uniqueness of solution curves for a time independent arc field. In this paper, we extend the result to the time dependent case, namely we show the existence and uniqueness of solution curves for a time dependent arc field. We also introduce the notion of the sum of two time dependent arc fields and show existence and uniqueness of solution curves for this sum.Comment: 29 pages,6 figure

    Existence and uniqueness for Mean Field Games with state constraints

    Full text link
    In this paper, we study deterministic mean field games for agents who operate in a bounded domain. In this case, the existence and uniqueness of Nash equilibria cannot be deduced as for unrestricted state space because, for a large set of initial conditions, the uniqueness of the solution to the associated minimization problem is no longer guaranteed. We attack the problem by interpreting equilibria as measures in a space of arcs. In such a relaxed environment the existence of solutions follows by set-valued fixed point arguments. Then, we give a uniqueness result for such equilibria under a classical monotonicity assumption

    A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow

    Get PDF
    In this paper we present a Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow. Hughes originally proposed a coupled nonlinear PDE system describing the evolution of a large pedestrian group trying to exit a domain as fast as possible. The original model corresponds to a system of a conservation law for the pedestrian density and an Eikonal equation to determine the weighted distance to the exit. We consider this model in presence of small diffusion and discuss the numerical analysis of the proposed Semi-Lagrangian scheme. Furthermore we illustrate the effect of small diffusion on the exit time with various numerical experiments

    Continuity for s-convex fuzzy processes

    Get PDF
    In a previous paper we introduced the concept of s-convex fuzzy mapping and established some properties. In this work we study the continuity for s-convex fuzzy processes

    On stationary points of nonexpansive set-valued mappings

    Get PDF
    In this paper we deal with stationary points (also known as endpoints) of nonexpansive set-valued mappings and show that the existence of such points under certain conditions follows as a consequence of the existence of approximate stationary sequences. In particular we provide abstract extensions of well-known fixed point theorems.Dirección General de Enseñanza SuperiorJunta de Andalucí

    On the nonemptiness of approximate cores of large games

    Get PDF
    We provide a new proof of the nonemptiness of approximate cores of games with many players of a finite number of types. Earlier papers in the literature proceed by showing that, for games with many players, equal-treatment cores of their “balanced cover games,” which are nonempty, can be approximated by equal-treatment \varepsilon ? -cores of the games themselves. Our proof is novel in that we develop a limiting payoff possibilities set and rely on a fixed point theorem

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model

    Get PDF
    The alignment in flavour space of the Yukawa matrices of a general two-Higgs-doublet model results in the absence of tree-level flavour-changing neutral currents. In addition to the usual fermion masses and mixings, the aligned Yukawa structure only contains three complex parameters, which are potential new sources of CP violation. For particular values of these three parameters all known specific implementations of the model based on discrete Z_2 symmetries are recovered. One of the most distinctive features of the two-Higgs-doublet model is the presence of a charged scalar. In this work, we discuss its main phenomenological consequences in flavour-changing processes at low energies and derive the corresponding constraints on the parameters of the aligned two-Higgs-doublet model.Comment: 46 pages, 19 figures. Version accepted for publication in JHEP. References added. Discussion slightly extended. Conclusions unchange
    corecore