839 research outputs found
Epidemics on contact networks: a general stochastic approach
Dynamics on networks is considered from the perspective of Markov stochastic
processes. We partially describe the state of the system through network motifs
and infer any missing data using the available information. This versatile
approach is especially well adapted for modelling spreading processes and/or
population dynamics. In particular, the generality of our systematic framework
and the fact that its assumptions are explicitly stated suggests that it could
be used as a common ground for comparing existing epidemics models too complex
for direct comparison, such as agent-based computer simulations. We provide
many examples for the special cases of susceptible-infectious-susceptible (SIS)
and susceptible-infectious-removed (SIR) dynamics (e.g., epidemics propagation)
and we observe multiple situations where accurate results may be obtained at
low computational cost. Our perspective reveals a subtle balance between the
complex requirements of a realistic model and its basic assumptions.Comment: Main document: 16 pages, 7 figures. Electronic Supplementary Material
(included): 6 pages, 1 tabl
HAMAP in 2015: updates to the protein family classification and annotation system
HAMAP (High-quality Automated and Manual Annotation of Proteins—available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorith
A measurement of from the Gross-Llewellyn Smith Sum Rule
We extract a set of values for the Gross-Llewellyn Smith sum rule at
different values of 4-momentum transfer squared (), by combining revised
CCFR neutrino data with data from other neutrino deep-inelastic scattering
experiments for . A comparison with the order
theoretical predictions yields a determination of
at the scale of the Z-boson mass of . This measurement
provides a new and useful test of perturbative QCD at low , because of the
low uncertainties in the higher order calculations.Comment: 4 pages, 4 figure
HAMAP in 2013, new developments in the protein family classification and annotation system
HAMAP (High-quality Automated and Manual Annotation of Proteins—available at http://hamap.expasy.org/) is a system for the classification and annotation of protein sequences. It consists of a collection of manually curated family profiles for protein classification, and associated annotation rules that specify annotations that apply to family members. HAMAP was originally developed to support the manual curation of UniProtKB/Swiss-Prot records describing microbial proteins. Here we describe new developments in HAMAP, including the extension of HAMAP to eukaryotic proteins, the use of HAMAP in the automated annotation of UniProtKB/TrEMBL, providing high-quality annotation for millions of protein sequences, and the future integration of HAMAP into a unified system for UniProtKB annotation, UniRule. HAMAP is continuously updated by expert curators with new family profiles and annotation rules as new protein families are characterized. The collection of HAMAP family classification profiles and annotation rules can be browsed and viewed on the HAMAP website, which also provides an interface to scan user sequences against HAMAP profile
Simulations from a new neutrino event generator
We construct a new Monte Carlo generator of events for neutrino interactions.
The dynamical models for quasi-elastic reactions, excitation and more
inelastic events described by the DIS formalism with the PDFs modified
according to recent JLab data are used. We describe in detail single pion
production channels, which combine the excitation and DIS
contribution. Many comparisons of the outcome of simulations with experimental
data are presented.Comment: To appear in the proceedings of 4th International Workshop on
Neutrino Nucleus Interactions in the Few GeV Region (NuInt05), Okayama,
Japan, 26-29 September, 200
Neutrino Interactions In Oscillation Experiments
We calculate neutrino induced cross-sections relevant for oscillation
experiments, including the -lepton threshold for quasi-elastic, resonance
and deep inelastic scattering. In addition to threshold effects, we include
nuclear corrections for heavy targets which are moderate for quasi-elastic and
large for single pion production. Nuclear effects for deep inelastic reactions
are small. We present cross sections together with their nuclear corrections
for various channels which are useful for interpreting the experimental results
and for determining parameters of the neutrino sector..Comment: 24 pages, 18 figure
HAMAP in 2015: updates to the protein family classification and annotation system.
HAMAP (High-quality Automated and Manual Annotation of Proteins-available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm
Inclusive jet cross section in collisions at TeV
The inclusive jet differential cross section has been measured for jet
transverse energies, , from 15 to 440 GeV, in the pseudorapidity region
0.10.7. The results are based on 19.5 pb of data
collected by the CDF collaboration at the Fermilab Tevatron collider. The data
are compared with QCD predictions for various sets of parton distribution
functions. The cross section for jets with GeV is significantly
higher than current predictions based on O() perturbative QCD
calculations. Various possible explanations for the high- excess are
discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review
Letter
Nuclear Structure Functions in the Large x Large Q^2 Kinematic Region in Neutrino Deep Inelastic Scattering
Data from the CCFR E770 Neutrino Deep Inelastic Scattering (DIS) experiment
at Fermilab contain events with large Bjorken x (x>0.7) and high momentum
transfer (Q^2>50 (GeV/c)^2). A comparison of the data with a model based on no
nuclear effects at large x, shows a significant excess of events in the data.
Addition of Fermi gas motion of the nucleons in the nucleus to the model does
not explain the excess. Adding a higher momentum tail due to the formation of
``quasi-deuterons'' makes some improvement. An exponentially falling F_2
\propto e^-s(x-x_0) at large x, predicted by ``multi-quark clusters'' and
``few-nucleon correlations'', can describe the data. A value of s=8.3 \pm
0.7(stat.)\pm 0.7(sys.) yields the best agreement with the data.Comment: 4 pages, 4 figures, 1 table. Sibmitted to PR
A Precise Measurement of the Weak Mixing Angle in Neutrino-Nucleon Scattering
We report a precise measurement of the weak mixing angle from the ratio of
neutral current to charged current inclusive cross-sections in deep-inelastic
neutrino-nucleon scattering. The data were gathered at the CCFR neutrino
detector in the Fermilab quadrupole-triplet neutrino beam, with neutrino
energies up to 600 GeV. Using the on-shell definition, , we obtain .Comment: 10 pages, Nevis Preprint #1498 (Submitted to Phys. Rev. Lett.
- …
