229 research outputs found
Measurement of the Spin-Dependence of the pbar-p Interaction at the AD-Ring
We propose to use an internal polarized hydrogen storage cell gas target in
the AD ring to determine for the first time the two total spin-dependent pbar-p
cross sections sigma_1 and sigma_2 at antiproton beam energies in the range
from 50 to 450 MeV. The data obtained are of interest by themselves for the
general theory of pbar-p interactions since they will provide a first
experimental constraint of the spin-spin dependence of the nucleon-antinucleon
potential in the energy range of interest. In addition, measurements of the
polarization buildup of stored antiprotons are required to define the optimum
parameters of a future, dedicated Antiproton Polarizer Ring (APR), intended to
feed a double-polarized asymmetric pbar-p collider with polarized antiprotons.
Such a machine has recently been proposed by the PAX collaboration for the new
Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, Germany.
The availability of an intense stored beam of polarized antiprotons will
provide access to a wealth of single- and double-spin observables, thereby
opening a new window on QCD spin physics.Comment: 51 pages, 23 figures, proposal submitted to the SPS committee of CER
Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface
The nuclear polarization of molecules formed by recombination
of nuclear polarized H atoms on the surface of a storage cell initially coated
with a silicon-based polymer has been measured by using the longitudinal
double-spin asymmetry in deep-inelastic positron-proton scattering. The
molecules are found to have a substantial nuclear polarization, which is
evidence that initially polarized atoms retain their nuclear polarization when
absorbed on this type of surfac
Quark helicity distributions in the nucleon for up, down, and strange quarks from semi--inclusive deep--inelastic scattering
Polarized deep--inelastic scattering data on longitudinally polarized
hydrogen and deuterium targets have been used to determine double spin
asymmetries of cross sections. Inclusive and semi--inclusive asymmetries for
the production of positive and negative pions from hydrogen were obtained in a
re--analysis of previously published data. Inclusive and semi--inclusive
asymmetries for the production of negative and positive pions and kaons were
measured on a polarized deuterium target. The separate helicity densities for
the up and down quarks and the anti--up, anti--down, and strange sea quarks
were computed from these asymmetries in a ``leading order'' QCD analysis. The
polarization of the up--quark is positive and that of the down--quark is
negative. All extracted sea quark polarizations are consistent with zero, and
the light quark sea helicity densities are flavor symmetric within the
experimental uncertainties. First and second moments of the extracted quark
helicity densities in the measured range are consistent with fits of inclusive
data
The Q^2-Dependence of Nuclear Transparency for Exclusive Production
Exclusive coherent and incoherent electroproduction of the meson
from H and N targets has been studied at the HERMES experiment as a
function of coherence length (), corresponding to the lifetime of hadronic
fluctuations of the virtual photon, and squared four-momentum of the virtual
photon (). The ratio of N to H cross sections per nucleon,
known as nuclear transparency, was found to increase (decrease) with increasing
coherence length for coherent (incoherent) electroproduction. For
fixed coherence length, a rise of nuclear transparency with is observed
for both coherent and incoherent production, which is in agreement
with theoretical calculations of color transparency.Comment: 5 pages, 4 figure
Combinatorial nuclear level density by a Monte Carlo method
We present a new combinatorial method for the calculation of the nuclear
level density. It is based on a Monte Carlo technique, in order to avoid a
direct counting procedure which is generally impracticable for high-A nuclei.
The Monte Carlo simulation, making use of the Metropolis sampling scheme,
allows a computationally fast estimate of the level density for many fermion
systems in large shell model spaces. We emphasize the advantages of this Monte
Carlo approach, particularly concerning the prediction of the spin and parity
distributions of the excited states, and compare our results with those derived
from a traditional combinatorial or a statistical method. Such a Monte Carlo
technique seems very promising to determine accurate level densities in a large
energy range for nuclear reaction calculations.Comment: 30 pages, LaTex, 7 figures (6 Postscript figures included). Fig. 6
upon request to the autho
Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target
Single-spin asymmetries in the semi-inclusive production of charged pions in
deep-inelastic scattering from transversely and longitudinally polarized proton
targets are combined to evaluate the subleading-twist contribution to the
longitudinal case. This contribution is significantly positive for (\pi^+)
mesons and dominates the asymmetries on a longitudinally polarized target
previously measured by \hermes. The subleading-twist contribution for (\pi^-)
mesons is found to be small
Double hadron leptoproduction in the nuclear medium
First measurement of double-hadron production in deep-inelastic scattering
has been measured with the HERMES spectrometer at HERA using a 27.6 GeV
positron beam with deuterium, nitrogen, krypton and xenon targets. The
influence of the nuclear medium on the ratio of double-hadron to single-hadron
yields has been investigated. Nuclear effects are clearly observed but with
substantially smaller magnitude and reduced -dependence compared to
previously measured single-hadron multiplicity ratios. The data are in fair
agreement with models based on partonic or pre-hadronic energy loss, while they
seem to rule out a pure absorptive treatment of the final state interactions.
Thus, the double-hadron ratio provides an additional tool for studying
modifications of hadronization in nuclear matter
Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target
Single-spin asymmetries for semi-inclusive electroproduction of charged pions
in deep-inelastic scattering of positrons are measured for the first time with
transverse target polarization. The asymmetry depends on the azimuthal angles
of both the pion () and the target spin axis () about the virtual
photon direction and relative to the lepton scattering plane. The extracted
Fourier component \cmpi is a signal of the previously unmeasured quark
transversity distribution, in conjunction with the so-called Collins
fragmentation function, also unknown. The Fourier component \smpi of the
asymmetry arises from a correlation between the transverse polarization of the
target nucleon and the intrinsic transverse momentum of quarks, as represented
by the previously unmeasured Sivers distribution function. Evidence for both
signals is observed, but the Sivers asymmetry may be affected by exclusive
vector meson productio
Interplay among transversity induced asymmetries in hadron leptoproduction
In the fragmentation of a transversely polarized quark several left-right
asymmetries are possible for the hadrons in the jet. When only one unpolarized
hadron is selected, it exhibits an azimuthal modulation known as Collins
effect. When a pair of oppositely charged hadrons is observed, three
asymmetries can be considered, a di-hadron asymmetry and two single hadron
asymmetries. In lepton deep inelastic scattering on transversely polarized
nucleons all these asymmetries are coupled with the transversity distribution.
From the high statistics COMPASS data on oppositely charged hadron-pair
production we have investigated for the first time the dependence of these
three asymmetries on the difference of the azimuthal angles of the two hadrons.
The similarity of transversity induced single and di-hadron asymmetries is
discussed. A new analysis of the data allows to establish quantitative
relationships among them, providing for the first time strong experimental
indication that the underlying fragmentation mechanisms are all driven by a
common physical process.Comment: 6 figure
Flavor decomposition of the sea quark helicity distributions in the nucleon from semi-inclusive deep-inelastic scattering
Double-spin asymmetries of semi-inclusive cross sections for the production
of identified pions and kaons have been measured in deep-inelastic scattering
of polarized positrons on a polarized deuterium target. Five helicity
distributions including those for three sea quark flavors were extracted from
these data together with re-analyzed previous data for identified pions from a
hydrogen target. These distributions are consistent with zero for all three sea
flavors. A recently predicted flavor asymmetry in the polarization of the light
quark sea appears to be disfavored by the data.Comment: 5 pages, 3 figure
- …
